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PREFACE

The study reported herein presents results of research performed
at Massachusetts Institute of Technology (MIT), Cambridge, MA, under
contract with the Dredging Research Program (DRP) of Headquarters,
U.S. Army Corps of Engineers (HQUSACE). The contract was administered
under the Calculation of Boundary Layer Properties (Noncohesive
Sediments) Work Unit 32463, which is part of DRP Technical Area 1
(TAl), "Analysis cf Dredged Material Placed in Open Water."
Messrs. Robert Campbell and John H. Lockhart, Jr., were DRP Chief and
TAl Technical Monitor from HQUSACE, respectively. Mr. E. Clark
McNair, Jr., U.S. Army Engineer Waterways Experiment Station (WES)
Coastal Engineering Research Center (CERC), was DRP Program Manager
(PM), and
Dr. Lyndell Z. Hales, CERC, was Assistant PM. Dr. Nicholas C. Kraus,
Senior Scientist, CERC, was Technical Manager for DRP TAl and Princi-
pal Investigator for Work Unit 32463 during the investigation.
Dr. Kraus was succeeded as Technical Manager of TAl by Dr. Billy H.
Johnson, WES Hydraulics Laboratory, and as Principal Investigator for
Work Unit 32463 by Dr. Norman W. Scheffner, CERC Coastal Oceanography
Branch.

This report was prepared and the associated research performed by
Palitha Nalin Wikramanayake and Ole Secher Madsen, both of the Ralph
M. Parsons Laboratory, MIT. The final report was delivered to the
CERC on 1 September 1990.

At the time of publication of this report, Director of WES was
Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

SUMMARY

When wind-generated waves propagate from the deep ocean onto the
continental shelf they begin to feel the effects of the bottom. These
bottom effects are accounted for as bottom friction which arises due
to the no-slip flow condition on the bottom. This condition gives rise
to a bottom shear stress and a thin boundary layer where significant
energy dissipation can take place.

The goal of this study was to develop a simple, physically
realistic method to predict the friction factor over a movable sand
bed under field conditions. Since reliable field measurements are
available only for ripple geometry, laboratory data are used to derive
the friction factor. Laboratory experiment& are outlined in this
report along with a brief description of the methods involved in the
model derivation.

The model is formulated in two stages. The first involves deriv-
ing predictive relations for the ripple geometry for a given bottom
sediment and a given wave condition. The second is the development of
a relationship between flow, the ripple geometry, and the resulting
friction factor. The relation between the ripple geometry and the
roughness and the relationship between the friction factor and the
wave, sediment, and fluid parameters is analyzed. Finally, simple
relationships for the prediction of the roughness of a movable bed
under regular and irregular waves are proposed and numerical examples
illustrating use of the relationships are given.

The consents of this report are nos to be used for advertising, publication,
or prmodonatl purposes. Citaion of trade names does not constitute an
official endorsement or approval of the use of such commercial products
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PART I: INTRODUCTIOI

1. When wind generated waves propagate from the deep ocean onto the

continental shelf they will begin to feel the effects of the bottom. The

chief effects are shoaling, refraction, and bottom friction. The first two

are comonly accounted for by assuming that there is inviscid flow all the

way to the ocean bottom. Bottom friction, however, arises due to the no-

slip condition at the bottom. This condition gives rise to a bottom shear

stress and a thin boundary layer where significant energy dissipation can

take place.

2. This a1ergy dissipation results in a decrease in the wave height.

Therefore in order to predict the wave height in coastal areas it is

necessary to quatify the bottom shear -tress. Another typical feature of

coastal regiovs is the presence of steady currents induced by winds or

tides. As discussed in the previous report (Madsen and Vikramanayake,

1990) the wave boundary layer causes the currents to experience an

increased bottom resistance. Furthermore the wave motion at the bottom is

usually strong enough to mobilize the bottom sediments, which in

conjunction with a steady current can cause significant sediment transport.

3. It is obvious then that quantification of all these processes must

be based on a good estimate of the bottom shear stress caused by the wave

motion. Following the work of Kajiura (1964) and Jonsson (1966) this is

done by relating the shear stress to the near-bottom wave velocity using a

friction factor similar to that used in steady boundary layer flows. This

friction factor can be calculated once the near-bottom Reynolds number and

the relative roughness of the bottom are known. When the flow is fully

rough turbulent, which is usually the case in most field scale flows, the

friction factor is dependent only on the relative roughness of the bottom.

4. The relative roughness of the bottom is the ratio of the length

scale of the wave orbital motion at the bottom to the length scale of the

bottom roughness. A fundamental assumption of this approach is, in common

with what is done for steady turbulent boundary layers, that the geometry

of the bottom can be represented by a single length scale. While this is

obviously an oversimplification for complex bottom geometry, it will be

seen that the scatter in the experimental data is such that a more detailed
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model of the bottom roughness cannot be justified.

5. Therefore when the bed geometry is known in advance, as in the

case of a gravel bottom, a bottom roughness length can be estimated and the

wave shear stress for a given wave motion can be calculated. In most

coastal regions the bottom consists of cohesionless sediment--usually

quartz sand--with diameters of the order of 0.2 mm. For a flat sediment

bed the roughness could be expected to be comparable to the grain diameter.

6. However, wave attenuation measurements in the field, for example

Iwagaki and Kakinuma (1963) and (1967), Treloar and Abernathy (1978), have

resulted in values of the friction factor that are an order of magnitude

higher than those that could be expected from a flat sediment bed. This is

due to the presence of ripples and other bedforms on the bottom resulting

in significantly greater resistance to the wave motion than from a plane

bed.

7. The development of bed forms on beds of cohesionless sediment

under the action of regular waves has been studied in detail under

laboratory conditions. When an initially plane sediment bed is subjected

to an increasing wave motion a point will be reached when the motion is

just sufficient to move a few grains to and fro. This is referred to as

initiation of motion. Further increase of the wave motion results in the

formation of regular two-dimensional ripples with well-defined heights,

lengths, and steepness. As the wave bottom orbital amplitude, which is the

length scale of the wave motion, increases the ripple height and length

increase while the steepness remains approximately constant.

8. Increase in the wave motion beyond a certain critical condition

results in a decrease of the ripple steepness. Under these conditions the

ripples are no longer regular and start to exhibit three-dimensional

features. The ripple crests are more rounded than in the two-dimensional

stage. This is due to ripples being overcome by the stronger wave motion.

Still stronger wave motion results in the disappearance of the ripples.

The bed is once again plane. However, under these conditions there is a

mobile layer of sediment on the bed that follows the wave motion. This

condition is known as sheet flow. At all stages of this process the exact

geometry is found to depend on properties of the wave motion, the fluid and

the sediments.
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9. When bedforms are present it can be expected that the bottom

roughness is scaled by their geometry and not by the grain diameter. Under

.heetflow conditions there will be an increased friction due to the moving

grains leading to an equivalent roughness scaled by the grain notion.

Therefore it is seen that the roughness of a bed of cohesionless sediment

is not a constant but is dependent on the wave, fluid, and sediment

parameters.

10. Another important factor that must be considered when applying

these ideas to field situations is that waves in the field are most often

not regular and monochromatic. Instead, the coastal wave environment

consists of a range of wave frequencies and amplitudes from many

directions. Laboratory and field data suggest that bedforms under

irregular waves can be significantly different from those obtained using
regular waves. Still further complications arise when a steady current is

present along with the waves. Current motions comparable to the wave
motion can alter the geometry of the ripples and thus change their

resistance to the wave motion.

11. In this report therefore an attempt is made to formulate a sinple,

physically realistic method to predict the equivalent roughness of a mobile

bed under regular and irregular wave motion. The most recent laboratory

and field data available on wave-formed ripple geometry and energy

dissipation will be used. Extensions to cases for which no data are

available will be suggested.

12. In Part II the concepts of bed roughness and the wave friction

factor will be discussed. The derivation of the friction factor from

experimental measurements will be outlined along with a brief description

of the methods involved. The interaction between waves and a bed of

cohesionless sediment will be reviewed in Part III. This will include the

initiation of motion, ripple geometry and disappearance of ripples. The

similarities and differences between results using regular and irregular

laboratory waves and results from the field will be explored.

13. The available measurements of energy dissipation under wave motion

will be utilized in Part IV to derive the equivalent bottom roughness due

to bedforms. The relation between the ripple geometry and the equivalent

roughness and the relationship between the friction factor and the wave,

9



sediment, and fluid parameters will be analyzed. Simple relationships for

prediction of the roughness of a moveable bed under regular and irregular

waves will be proposed.

14. Some numerical examples that illustrate the use the relationships

proposed in Part IV will be given in Part V. A summary of the analysis and

results of this report will be given in Part VI along with recommendations

for future research.
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PART II: THE WAVE FRICTIOI FACTOR AND

THE EQUIVALENT BOTTOM ROUGHNESS

The Wave Friction Factor

15. The bed shear stress caused by steady flow over a horizontal bed

has been studied for many years. Jonsson (1966), (1980a) and Jonsson and

Carlsen (1976) applied the ideas developed for this case to the case of

purely oscillatory flow over a flat bed by defining

Tbu = fWu- M (1)

where

•b = Maximum bed shear stress due to the wave motion

p = Density of the fluid

fw= Wave friction factor

ubn M Maximum near-bottom velocity due to the wave motion.

16. Carrying the analogy further Jonsson used available experimental

and theoretical knowledge to develop a friction factor diagram analogous to

the Moody diagram used for steady pipe flow. In this diagram the flow is

classified as belonging to the laminar, smooth turbulent, or rough

turbulent regimes.

17. The friction factor for the .laminar region is obtained by solving

the linearized equations of motion for the wave boundary layer and is given

by
f = 2 (2)

where

Re = ub*lb is the flow Reynolds number

v= Radian frequency of the oscillatory motion

Ab - Ub. is the bottom excursion amplitude

v - kinematic viscosity of the fluid

11



18. In the smooth turbulent regime the flow is turbulent but still not

affected by the properties of the bed. The friction factor depends only on

the Reynolds number but the governing equations can no longer be solved

exactly. For a given bed at high enough Reynolds numbers and large enough

roughness scale the geometry of the bottom will affect the flow and after a

transition region the flow will become rough turbulent. In rough turbulent

flow--which is practically always the regime seen in the field--the

friction factor is dependent only on the relative roughness of the b or.

19. The friction factor for the laminar and smooth turbulent regions

is plotted in Figure 1 against the flow Reynolds number. For the purposes
of this study the transition region will be ignored and the friction factor

for a given bed will be taken as the greater of the value from Figure 1 or

the value for fully rough turbulent flow, from equation (7), presented

graphically in Figure 2.

Bed RouLhness

20. In rough turbulent flow the roughness elements of the bed are not

shielded by the viscous sub-layer and experience the full effect of the

external flow. On a microscopic scale the bed shear stress is caused by

the form drag and skin friction acting on individual roughness elements.

21. However at distances from the bed that are large compared to kb,
the physical size of the roughness elements, the effect of each element

cannot be resolved. Uhat is seen is a turbulent motion caused by many

elements. At this distance therefore it is possible to define an average

bottom shear stress. In steady flows it has been observed, Schlichting

(1968), that in this region the flow velocity u can be represented by

u = US ln Z (3)

where

u*-. V 7p is the shear velocity

x= Von Karman's constant (U = 0.4)

z0 = a measure of the boundary roughness.

.12
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Figure 1. Friction factor for laminar and smoth turbulent flow from Jonsson

(1966)
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Figure 2. Friction factor equations for fully rough turbulent flow.
Comparison of equations (6), (6), and (7).
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22. In steady rough turbulent flow the degree of roughness of a

surface is quantified by its equivalent Iikuradse sand grain roughness ka.

This is defined as the diameter of uniform sand grains that, when closely

packed together, produce the same boundary resistance as the surface under

consideration. From measurements of velocity profiles in the region where

(3) holds it has been found that

S- k (4)
Zg-

23. This definition of the bottom roughness can be extended to any

geometry that has sufficient regularity to allow the definition of the

average shear stress. The exact value of this representative roughness

must either be established by experiment or by extrapolation from results

for similar geometries.

24. The relative roughness of a surface is then defined as the ratio
of kn and a length scale of the external flow. In steady flows this could

be the flow depth or the lateral dimension of a closed conduit. In

oscillatory flows the turbulence is confined to a thin boundary layer and

the appropriate length scale is the excursion amplitude lb.

25. Measurements of velocity profiles in oscillatory boundary layers,

for example Jonsson and Carlsen (1976) and Jensen (1989), indicate that the
velocity is logarithmic close to the bed for most parts of the wave cycle.

This has lead to attempts to use the observed profiles along with equations

(3) and (4) to calculate the shear velocity and the equivalent roughness as

is done for steady flows.

26. Furthermore the use of z0 as the height above the bed where the
velocity vanishes is a widely used boundary condition in theoretical

models. It should be pointed out that this is a purely conceptual

extrapolation as equation (3) does not hold very near the bed. However,

this method has been used quite successfully to relate the bottom roughness

and the velocity profile in steady flows. It also has the advantage that

it is a simple formulation. For these reasons the roughness concepts

developed for steady turbulent flows have been used virtually unchanged in

the analysis of oscillatory boundary layers.
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Friction Factor EQuations

27. Jonsson (1966) and Jonsson and Carlsen (1976) used a simplified

approach to obtain a theoretical relationship between the friction factor
and the relative roughness. The undetermined coefficient in this equation

was found using two sets of velocity profile measurements in a wave

boundary layer. The resulting implicit expression for fw was

I + logl ] a logo[4.] - 0.08

Swart (1977) proposed an approximation to equation (5) that was explicit in

fw as

tw- exp[5.213(Ab/kn)4.'• 4 - 5.977] (6)

28. Grant and Nadsen (1979) used a linear eddy viscosity model to
derive the equation

fw = 0.08 (7)

ker224Tj + kei224•

where ker and kei are the Kelvin functions of zeroth order,

( kn/30 (8)

and urn is the shear velocity based on the maximum bottom shear stems u.. -

S- X / fub.. In passing, it should be noted that equation (7) is, for
all practical purposes, identical to the theoretical friction factor
relationship derived by Nadsen and Vikramanayake (1990).

29. The three equations (6), (6), and (7) are plotted in Figure 2 as
graphs of friction factor against the relative roughness. It can be seen
that all three curves lie quite close to each other showing that the
theoretical and semi-empirical approaches lead to similar results.

30. It should be kept in mind that equations (5) and (7) are derived
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assuming that the physical scale of the bed roughness kb is sach smaller

than the boundary layer thickness. This condition in satisfied when Ab/kb

is large. Therefore the use of these equations at low values of Ab/kn

should be viewed as an extrapolation and not as a theoretical prediction.

31. In fact both Jonsson (1966) and Grant and Kadsen (1982) propose

that fw be considered a constant when Ab/kn is less than unity. This was

based in part on the fact that the largest friction factor measured by

Bagnold (1946) was 0.24. However since masurements on rippled sand beds

give values as high as 0.5 we will not consider an upper limit for fw in

this study.

32. However, the problem of quantifying the equivalent roughness kn

for a particular bed remains unresolved. Two different friction factor

relations, for example equations (5) and (6) above, could fit the sam data

equally well if the definition of kn is adjusted. Riedel et al. (1972)

published an extensive set of friction factor data for surfaces roughened

with closely packed uniform sand grains. Grant (1975) found that equation

(6) fit the data well if the bed roughness was set equal to the grain

diameter.

Wave Friction and Energy Dissipation

33. The average energy dissipation per unit area in the wave boundary

layer, Ed, was derived by Kajiura (1968) as

Ed - -Tb(t)ub(t) (9)

where vb(t) and Ub(t) are the instantaneous bed thear stress and near-bottom

wave velocity, respectively, and the overbar denotes time averaging.

Equation (9) can be evaluated only if the tims variation of the bed shear

stress is known.

34. Jonsson and Carlsen (1976) present data for a fixed, roughened bed

indicating that the time variation of Tb is of the form

Tb(t) = Tb.Icos(dt+F)Icos(gt+p) (10)
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when the bottom velocity is of the form ubscos(ut), V is the phase lead of

the shear stress with respect to the near-bottom velocity. For laminar

flow p will be 45 degrees while for turbulent flow it in expected to be

somewhat less.

35. Lofquist (1986) has measured the instantaneous shear stress and

the average energy dissipation over a rippled sand bed. His results show

that the time variation of the shear stress can be very different from

equation (10). The energy dissipation Ed can be related to the near-bottom

velocity ube by an energy dissipation factor f@ defined by

E 3 2 Ipoulm(11)

36. It should be noted that a similar result with fw replacing fe can

be obtained if the time variation in equation (10) and the definition of

equation (1) are substituted into the right hand side of equation (9) with

the phase lead p taken to be zero. If a value of 20 degrees is assumed for

the phase lead, which is the average value from the measurements of

Lofquist (1986), it would lead to fw being greater than fe by about 6%.

37. Both fw as defined from the maximum shear stress in equation (1)

and fe can be calculated from the data presented in Lofquist (1986). They

are plotted against each other in Figure 3. It can be seen that except for

a few points where fw is mach greater than fe the two values are nearly

equal with fe being greater than fw by about 51. However this is a small

difference when compared to the uncertainity in the measured values.

38. The fact that fe is slightly greater than fw indicates that the

variation in equation (10) is not a good representation of the

instantaneous shear stress. If the eddy viscosity model of Madsen et al.

(1988) is used a sinusoidal variation of the bed shear stress would be

obtained. If the energy dissipation is calculated from equation (9) with

this variation along with a phase lead of 20 degrees fe as defined by

equation (11) is found to be greater than fw by about 10%. This is an

improvement over the result obtained using equation (10) and suggests that

the sinusoidal shear stress variation is better than the variation

suggested by equation (10).

39. Lofquist's experiments are described in greater detail in Appendix
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A. On closer examination of the conditions it is seen that fw is such

greater than fe when the ripple length is longest and therefore the number

of ripples in the test section is the least. Under these conditions the

effect of the end conditions can be expected to have the greatest effect.

Therefore it seems reasonable to disregard these points and to consider

that fw as defined by equation (1) and fe as defined by equation (11) are

identical for rippled sand beds.

Biperimental Determination of the Friction Factor

40. The friction factor has been determined from laboratory and field

measurements by three main methods, one direct and two indirect. The

direct method is to measure the bed shear stress due to the wave notion

using a device such as a shear plate. Then the friction factor can be

calculated directly from equation (1). This is the method used by Riedel

et al. (1972) for fixed beds roughened by sand grains. However, this

method would not be suitable for movable sand beds.

41. One of the indirect methods is through measurements of the

velocity profile in the wave boundary layer. This is the method used by

Jonsson and Carlsen (1976) for a fixed bed. They obtained the shear stress

in two ways. One was by numerical integration of the equation of motion

using the velocity measurements at various phases, while the other was

through the use of equation (3) applied to the near-bed portion of the

velocity profile.

42. Both these methods have the disadvantage that the velocity profile

at various phases of the external flow must be measured. This is likely to

be a difficult task on rippled sand beds. Furthermore even i'f this is done

the first method requires the calculation of the rate of change of velocity

with time at all levels. The accurate calculation of these gradients is a

difficult task. The second method involves fixing a theoretical bed level

in order to obtain a logarithmic velocity profile and also the question of

how far this region is assumed to extend.

43. The other indirect method of obtaining the friction factor is

through measurements of the energy dissipation caused by the wave boundary

layer. This has been done by measuring the wave attenuation in a wave
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flume and by measuring the energy input needed to maintain the wave notion
in a wave tunnel or an oscillating bed. This seem the only practicable

method for movable sand beds.

"44. Once the energy dissipation is calculated it is, however,
necessary to assume a relation between this value and the shear stress.

Jonsson (1966) has argued that this is not possible because of the need to
know the time variation of the shear stress and the phase lead with respect

to the external motion. However, as discussed in the previous section, the
data of Lofquist (1986) show that for rippled sand beds under a wide range

of wave conditions the friction factor can be taken equal to ft as defined

in equation (11).

45. Therefore in this report we will consider only those data sets
where the energy dissipation has been measured. This allows ft to be

determined unambiguously. The predictive relations proposed in later
sections will be correct for ft and therefore appropriate for applications,
such as predicting wave height attenuation, where the energy dissipation is

needed. Their use in applications which require the bottom shear stress

depend on the assumptions made above. In the remainder of the report fw

and fe will be used interchangeably and considered to represent the same

value

The Roughness of a Movable Bed

46. In the discussion following equation (3) it was stated that for

fixed sand roughened beds the bed roughness was found to be of the order of
the grain diameter. In Figure 4 calculated values of the friction factor

from the data of Carstens et al. (1969) are plotted against the ratio Ab/d.

Also shown in the figure are two theoretical curves. One is equation (7)
with kn - d as suggested by Grant (1975) while the other is equation (6)

with kn a 2.6d as suggested by Nielsen (1983).

47. The data points obtained from a rippled bed are for stable ripples
with a grain diameter of 0.297 mm. The points obtained from a flat bed are

under conditions for which the flat bed is unstable indicating that there

mast have been considerable sediment motion on the bottom. It can be seen

that the friction factors obtained from the rippled bed are an order of

20



1-..

"LEEN
.ok

°.*..

102 '.

LEGEND

7 Equation (7) k =d

Equation (6) k. = 2.5d
+ Unstable flat bed d =0.297 mm
* Rippled bed d =0.297 mm

l3

1 10 102 10 3  10 4

Add

Figure 4. Measured friction factors for rippled beds and unstable flat beds
along with the friction factor relations proposed by Grant and
Madsen (1979) and Nielsen (1983) for flat sand beds

21



magnitude higher than the values that would be predicted from the

theoretical equations assuming a flat bed. The points obtained with an
unstable flat bed also plot well above the theoretical curves.

48. This discrepancy shows very clearly that the grain diameter is not

the appropriate roughness scale both when the bed is rippled and when there

is significant sediment motion on the bottom. Therefore, if the use of

friction factor relations such as equations (6) and (7) is to be extended

to movable beds it is necessary to propose new roughness scales for use in

conditions where the flat sand bed is not stable.

49. These scales can be found by relating the observed roughness to
the ripple geometry and the wave and sediment parameters. It should be

emphasized here that it is the energy dissipation that is measured in the
experiments. The roughness must then be calculated from one of the

friction factor equations given above. Therefore in order to be consistent

it is important that the same equatioa be used when predicting the friction

factor after having predicted the roughness.

50. This means that as far as predicting the friction factor from the
analysis of the energy dissipation measurements iu concerned it does not

matter which equation is used provided the method is consistent. In this

report we will use equation (7) which was suggested by Grant and Madsen

(1979) without any modification for low values of Ab/kn.

51. Using this equation a value of Ab/kn can be found for every
measured value of the friction factor. Since Ab is known from the

experimental conditions this means that the equivalent roughness as defined

in this chapter is known. It is hoped that an analysis of these values

will lead to relations that can predict the equivalent roughness given the

ripple geometry and other parameters.

52. The method outlined above still requires the prediction of the

ripple geometry as this is also dependent upon the wave and sediment

parameters. It would appear that it is much simpler to predict the

friction factor directly from the wave and sediment parameters without

considering the ripples at all. A formula of this type has been proposed

by Vongvisessomjai (1987, 1988) and Madsen et al. (1990).

53. However, this kind of direct formula is based solely on data from

laboratory experiments. It will be shown in Part III that the ripple
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geometry seen in the field under irregular waves is quite different from

those seen under regular waves in the laboratory. Therefore it is

necessary to investigate the connection between ripple geometry and the

friction factor in order to propose a predictive relation that can be used

under field conditions. This viii be done in Part IV.
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PART III: FLUID - SEDINENT INTERBCTION

54. The effect of an applied wave motion on a movable bed composed of

cohesionless sand grains is examined in this section. Experimental data on

the initiation of motion, geometry of ripples, and the transition to sheet

flow will be analyzed in order to propose predictive relations that

describe these phenomena.

55. Since there has already been a considerable amount of work done

regarding the effect of regular waves on sand beds, for exale by

Stefanick (1979) and Nielsen (1979), this aspect will not be investigated

in detail. Instead the objective of this chapter will be to see how well

existing ideas for regular waves can be applied to data from laboratory

experiments with irregular waves and from field measurements.

Quantification of the Problem and Non-dimensional Variables

56. The physical problem considered is the response of a bed of

cohesionless grains forced by the oscillatory motion of the fluid above it.

This study is restricted to the behaviour of sand grains in water. It is

assumed that the sand grains are specified by one linear dimension such as

their mean diameter, d, and by the density of the grain material ps. The

relevant parameters for the water are its density p and its kinematic

viscosity v. Since the problem involves the suspension of the sand grains

the acceleration due to gravity must also be considered.

57. The oscillatory motion is assumed to be fully specified by its

bottom orbital amplitude Ab and its radian frequency u. This assumption

implies that this is entirely a bottom phenomena with no effect of the flow

depth. While this is the case in the field, where the bottom boundary

layer is only a small fraction of the depth, it will be seen that it is not

always true for laboratory experiments.

58. It is expected that any aspect of the interaction can be described

by the seven parameters Ab, us p, vs, d, pg, and g. Since these parameters

have three dimensions it follows that any feature expressed in non-

dimensional form is a function of four independent non-dimensional

parameters. Many different parameters have been proposed by various
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authors. Some of these have physical significance, e.g., expressing the

ratio of two forces on the grains, while others are used on the empirical

grounds that they improve the correlation of the data.

69. An obvious non-dimensional parameter is the specific weight of the

sand, s, defined as

s =(12)P

For quartz sand this value is close to 2.65.

60. Most of the laboratory experiments have been conducted at room

temperature which means that the viscosity was not varied over a large
range. A convenient non-dimensional parameter that includes the viscosity

is St introduced by Madsen and Grant (1976) and defined by

S* d (13)4Y

which has the advantage that it includes only fluid and sediment

parameters. Other parameters that include the viscosity have been
suggested, e.g., the friction Reynolds number Re* which is defined by

Re* = u~d (14)
IV

or the flow Reynolds number Re defined by equation (2). The parameter Re*

determines whether the flow over a flat sand bed is smooth or rough

turbulent.

61. The effect of varying the viscosity on the ripple geometry has not
been investigated in detail. Mogridge and Kamphuis (1972) conducted

experiments at 6WC and 22"C and concluded that there was no significant
difference in the ripple geometry over this range of temperatures.

However, Stefanick (1979) and Grant and Madsen (1982) found S* to be a
useful parameter in describing ripple geometry.

62. The oscillatory boundary layer over rippled beds has been observed
to be fully rough turbulent. Thus it may be argued that viscosity is not

an important factor in this problem. However, the problem also involves
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the notion of sand grains through the water, an aspect that is affected by
viscosity. Therefore S, will be considered in the analysis of ripple

geometry. For the problem of water at room temperature over a sand bed S*

will depend only on the grain diameter.

63. The remaining non-dimensional parameters will involve the wave

motion. One that is often used is the Shields parameter #, defined by

fW'u(15)S =(s-1)gd (5

where fw' is the friction factor for a flat sand bed. As mentioned in Part

II this is taken as the greater of the value obtained for laminar or smooth
turbulent flow from Figure 1 or the value obtained for rough turbulent flow

from equation (7) with kn - d. This parameter is proportional to the ratio

between the surface shear stress on a flat bed, which tends to mobilise the

sediment, and the submerged weight of the grains, which tends to oppose

grain motion.

64. A second parameter that involves the wave motion is the

acceleration parameter A* which is defined as

S= AbV2 (16)

This is the ratio of the inertial force on the grain due to the fluid

motion to the downward force due to gravity. It should be noted that while
s has been defined as a separate parameter it is also used in the

definitions of S*, #, and A*. This is done in order to give these three

parameters some physical meaning.

65. The most commonly measured characteristics of ripples are the
ripple length, A. and q the height of the ripple measured from crest to

trough. These values are usually made non-dimensional by dividing by the

grain diameter, d, or the orbital amplitude Ab. Another important non-

dimensional ripple parameter is the ripple steepness q/,A.
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Reuresentation of Irregalar Waves

66. In the previous section it was assumed that the near-bottom

orbital amplitude and the radian frequency were sufficient to specify the

wave notion. These parameters are uniquely determined in the case of

regular waves. However, waves in the field, even when they are in the same

direction, are practically always irregular with a range of heights and

periods.

67. Therefore in order to apply the ideas and results obtained from

the analysis of ripples caused by regular waves to the field it is

necessary to specify the field wave condition in terms of an equivalent

wave height and period. The expectation is that it would be possible to

find an equivalent representation that would lead to the same relations

being applicable for the ripples caused by both regular and irregular

waves.

68. Irregular waves are usually observed by obtaining a continuous

record of the displacement of the water surface. One way of specifying an

equivalent wave from this record is to take the root-mean-square wave

height, Hms, and the average wave period. However, it is known that for

many wave processes, such as breaking, it is the higher waves that are the

most significant. This has led to the significant wave height and period

being used to specify irregular waves. These are defined as the average

height and period of the highest one third of all the waves in the record.

If the wave heights are Rayleigh distributed it can be shown that the

significant wave height is equal to VHrms. The significant wave period is

usually nearly equal to the average wave period.

69. A more complete way of representing random waves is through the

wave spectrum. The spectrum gives the distribution of wave energy with the

frequency. The energy, En contained in the range en * Au/2 is given by

En = pgS.(Mn)AW (17)

where SW(u) is the surface amplitude spectrum.

70. Madsen et al. (1988) using a simple eddy viscosity model and the
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linearized bottom boundary layer equations obtained the spectral energy

dissipation using a friction factor obtained from an equivalent

mnochromtic wave. This wave was defined to have the same root-mean-

square bottom orbital velocity and amplitude as the specified wave

spectrum.

71. The equivalent bottom velocity Ubr was defined by

Ujr - 2 1 Sub(U) do (18)

where Sub is the spectrum of the near-bottom orbital velocity and is given

by

Sub(U)N - [•j So) (19)

72. The equivalent bottom orbital amplitude, Abr, was defined as

I& -2 S' N do (20)

and the equivalent radian frequency or can be found from

Mr a. U r (21)

73. It should be noted that in the above method the spectrum of the

bottom velocity is used to calculate the equivalent quantities. If an

equivalent surface wave representation, such as rns, is given, only the

wave number of this equivalent wave would be used to transfer the surface

quantities to the bottom. Thus it can be expected that the method of

Madsen et al. (1988) will provide a more realistic representation when the

spectrum is broad for intermediate waves.

74. Sato (1988) conducted experiments on ripple generation by

irregular waves in a wave tunnel. He developed his wave signal by

generating a surface displacement record based on an empirical spectrum and
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transformed it into a bottom velocity record using linear theory. This

signal was then fed to the wave tunnel piston. He then obtained a
significant* bottom velocity and period by considering the highest one

third of the bottom velocity fluctuations. These values were used as

representative of the irregular notion.

75. Since ripple formation is a bottom process it would appear that

both these methods, which are based an the bottom velocity rather than the

surface displacement, are superior to the use of the significant height and

period. The disadvantage of these methods is that they require either the

wave spectrum or a detailed record of the surface fluctuation. This type

of information is rarely reported. In particular, all the existing field

measurements of wave-formed ripples provide only an equivalent surface wave

to describe the wave conditions.

76. This equivalent surface wave is either the significant wave

height, HI/s, or the root-mean-square wave height Hms. easurmnts given

in one form can be converted to the other by assuming that the wave heights

are Rayleigh distributed, a condition that is approximately satisfied in

the field (Goda, 1985). H1/3 is a traditional parameter used in

applications such as wave forecasting. It was also suggested that using

H,/3 would result in a closer correspondence between ripples observed in the

field and in the laboratory. However, lielsen (1979, 1981) concluded that

the results were not comparable even when Hi/ 3 was used.

77. The root-mean-square wave height of a train of irregular waves

bears the same relationship to the total wave energy as the wave height of

a train of regular waves. This makes it a more meaningful parameter with

respect to the present study which is concerned with energy dissipation.

It is found in Part IV that the use of Hms results in a bed roughness and

friction factor obtained from irregular wave experiments being similar to

those seen with regular waves. Therefore Hros and the average period will

be used to represent irregular waves in the analysis presented here.

78. The near-bottom orbital amplitude is then obtained from the

equation

Abrus (22)
2s9s (lh)
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where h is the depth and k the wave number corresponding to the average

period.

Experimental Methods and Conditions

Laboratorv xAn iments

79. The response of a movable sand bed to an imposed wave motion has

been studied in the laboratory using three different apparatus. They are

the oscillating bed, the wave flue and the wave tunnel. Each apparatus

has its own advantages and disadvantages.

80. In the oscillating bed the sediment is placed on a movable tray

which is oscillated in still water. The biggest disadvantage here is that

since the grains are in motion here they will experience an additional

acceleration force that would not be present in the prototype case. Madsen

and Grant (1976a) and Nielsen (1979) analyze this difference and find that

while the additional force is negligible up to the initiation of motion it

is significant for flows strong enough to generate ripples.

81. This is supported by the experimental results obtained using this

apparatus. Analysis by Vongvissesonjai (1984) shows that the ripple

geometry is significantly different from the geometries obtained from wave

flumes and tunnels. Therefore ripple data from oscillating beds will not

be considered in this study.

82. In a wave flume waves are generated at one end, run over a sand

bed, and break on an absorber beach at the other end. This apparatus has

the advantages of a length very much larger than the ripple length and a

depth that is large compared to the ripple height. The disadvantages of

most wave flume experiments are that waves of prototype scale can not be

generated due to the limited scale of the flume, e.g., waves in most

facilities are limited to periods of 1-3 seconds. Another problem is that

reflection from the beach can distort the wave field in the flume.

83. Vave tunnels are closed conduits with no free surface. The water

in the tunnel is oscillated by a piston or some similar device at one end.

Thus it is possible to obtain prototype scale flows with large velocities

and periods. Another advantage is that the piston produces the bottom

velocity directly whereas in the wave flume this must be calculated from
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the observed surface displacement. Therefore with a wave tunnel it is

possible to prxduce any kind of near-bottom flow.

84. Due to these factors the wave tunnel in probably the best

apparatus in which to study the movable bed problem. Nevertheless some

drawbacks imposed by the relatively smail size of these devices should be

kept in mind. The chief problem is that the height of the tunnel is often

not large compared to the ripple height.

85. For example in the experiments conducted by Carstens et al. (1969)

ripples of height 7 ca were measured in a tunnel that was 30.5 cm high.

However the bottom velocity was calculated neglecting the ripples.

Similarly, Sato (1988) measured ripples of height 6 cm in a tunnel 21 cm

high. Uhen the ripple height is such a large fraction of the tunnel height

the flow field will not be the same as the prototype where the depth is

assumed to be much larger. than the ripple height. Another problem is

caused by the limited length of the test section. In the measurements of

Carstens et al. there were sometimes as few as six ripples on the sand bed.

In this situation end effects may have a significant effect on ripple

geometry.
86. The discussion above has shown that both wave flumes and wave

tunnels have their drawbacks. These, together with differences in scale

and the shape of sand grains contribute to the large scatter seen in the

data on ripple geometry.

Field Neasurements

87. There have been only a few field studies in which simtltaneous

measurements of ripples and the ambient wave conditions have been made.

The obvious reason for this is that these field measurements are difficult

to carry out, especially in deep water and under strong wave motions.

88. Inman (1957) published the first detailed field study. The ripple

geometry was measured in water depths of up to 30 m by divers. The wave

motion was recorded by a fathometer on a boat above the study site.

Nielsen (1984) recorded ripple geometry in the near-shore region at depths

of 1 to 2 m. He measured ripples under both breaking and non-breaking

waves. Only the ripples formed by non-breaking waves are considered in

this study. The wave conditions were measured using a pressure gauge

placed on the bottom. Killer and Komar (1980b) measured ripples in water
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depths of up to 30 a and measured the waves with a pressure gange.

However, they did not report the ripple heights as satisfactory measurement

was not possible.

89. Field measurements are open to criticism on a number of fronts.

Firstly, there in the question of whether the observed ripples are due to

the ambient waves or whether they were established by some previous wave

condition. All three of the studies reported above were carried out when

there were fairly constant wave conditions with sediment motion on the

bottom. This provides some basis for the belief that the ripples are due

to the prevailing wave conditions.

90. Other problems are that in the field the waves could be from any

direction and the effect of any steady currents that may be present. These

drawbacks can be overcome by careful selection of the field sites.

Furthermore the measurements, particularly of the ripple height, are likely

to involve significant errors.

91. Despite all these sources of error, field observations can be

carried out under ý-onditions that are not obtainable with laboratory

equipment. In addition since the ultimate "aim of the analysis of ripple

geometry is to amke predictions in the field it is only logical that the

laboratory results be compared with the field data.

Initiation of Notion

92. Since the formation of ripples from a flat bed requires the motion

of the sand grains it is logical to first consider the flow conditions

under which the grains first move. There are many criteria proposed for

the initiation of motion in the literature. A review is given by Sleath

(1984). Of these the most generally accepted criterion is the Shields

curve.

93. The Shields parameter was first used to describe the initiation of

motion in steady flows. It was shown by Madsen and Grant (1976b) that when

the Shields parameter, #, was defined as in equation (14), i.e., using the

grain diameter as the bed roughness scale, the Shields curve could also be

used to describe the initiation of motion for unsteady flows. The critical

value of # for the initiation of motion, #c, is plotted against S, in Figure
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5 which is the modified Shields diagram as presented by Madsen and Grant.

94. The figure shows the curve that is drawn through the data points

obtained from steady flow experiments. The initiation data from

oscillatory flow is plotted along with this curve in Figure 1 of Madsen and

Grant (1976b). It can be seen in that figure that the data do not show the

miniuzm of the curve very well and for values of S* greater than about 8 a

straight line of #c - 0.55 will fit the data well. However, the data do

show an increase in #c for S, less than 8--which corresponds to sand grains

of diameter 0.4 mm for room temperature. This effect, is due to the viscous

sub-layer, which is present for these small diameters, shielding the grains

from the turbulence of the outer flow.

95. The data used by Madsen and Grant (1976b) were obtained from

materials with a wide range of specific gravities. That these data plot in

the same region of the Shields diagram indicates that the effects of s are

well described by including it in the definition of #. Furthermore the

analysis indicated no significant effect of the acceleration parameter A*.

This means that the initiation of motion, which should in theory depend on

four non-dimensional parameters, is quite well described by just two

parameters.

96. It should be kept in mind that the definition of the initiation of

motion is a very subjective one and may explain the large scatter of the

data points around the curve. Mathisen (1989) defined three criteria--

grain motion at irregularities, propagation of bedforms, and grain motion

on an initially flattened bed. He found that while the first two criteria

corresponded quite well with the Shields curve the third criteria was met

only at values of # significantly higher than #c.

97. This is because these experiments were conducted in a wave flume

with sand grains of diameter 0.12 mm. For these conditions the boundary

layer was laminar, making the initiation of motion more difficult. In any

event since sand beds in the field will have some irregularities the first

criterion is the important one. The fact that bedform propagation occurs

at slightly higher values of # means that ripple formation will begin soon

after the initiation of motion.

98. Initiation of motion under combined steady and oscillatory flow

was studied by Lee-Young and Sleath (1988) by oscillating a sediment bed at
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right angles to a steady current. It was found that the Shields curve

predicted the initiation well when the bed shear stress was calculated as

the vector sum of the current shear stress and the wave shear stress.

99. A field study on ripple generation in a depth of 22 a was reported

by Amos et al. (1988). The bottom velocity and bed conditions were

measured by an instrument package deployed on the bottom. The data show

that ripples were observed well below the critical value of the Shields

parameter.

100. However, examination of their Figure 6 shows that these ripples

were characterized as poorly developed ripples with rounded crests and

evidence of biodegradation. Thus it is likely that these are ripples that

were created by earlier wave conditions. It is significant that none of

what they refer to as well developed ripples lie below the Shields curve.

101. Thus it appears that existing data on initiation of motion under

waves supports the use of the Shields curve as a criterion. Therefore this

curve will be adopted as marking the lower limit of ripple formation. When

# is greater than #c then it will be assumed that the bed is rippled with

the geometry to be found from the relations proposed in the next section.

Geometry of Wave-generated Ripples

102. The ripple data to be used in this study, from regular and

irregular wave laboratory experiments and from field measurements, are

summarized in Tables 1, 2, and 3 respectively. All these data are

tabulated in Appendix A.

103. A prelimirtry analysis indicated that there were no significant

differences between data from wave flumes and wave tunnels. It should be

noted that the laboratory experiments cover the same range of sediment

sizes observed in the field. However, only a few experiments have been

conducted in the range of periods observed in the field.

104. The geometry of wave-generated sand ripples has been analyzed by

many authors. In most of these analyses the objective has been to find the

non-dimensional parameter that best correlated the data on a ripple

parameter such as the steepness. A curve fit through the data was then

proposed as a predictive relation.
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Table 1

Suary of Available Ripple Data from Laboratory Experiments
with Regular Vaves

Source Diameter Range of Type of lumber of
ofdaa of $and eriods Waatus data uoints

(m) (a)

Mathisen (1989) 0.12 2.6 VF 6

Sato (1988) 0.18 1-7 VT 12

0.56 1.5-5 V-T 10
Rosengaus (1987) 0.20 2.2-3 VF 9
Lambie (1984) 0.09 2.3-7.5 VT 20

0.15 2.7-7.2 VT 27
tiller & aonar (1980) 0.178 3-5 VF 4
Nielsen (1979) 0.082 1.0-1.7 VF 24

0.17 1.7 VF 10
0.36 .1.7 WV 10

Lofquist (1978) 0.18 3-8 VT 6

0.55 2.5-12 VT 23
Mogridge & lamphuis (1972) 0.36 1-2.5 VF 50

0.36 2.5-14 VT 21
Carstens et al. (1969) 0.19 -3.53 VT 6

0.297 -3.53 VT 17

0.585 N3.53 VT 19
Kennedy & Falcon (1965) 0.095 1.07-2.34 VF 4

0.32 1.39-1.57 VF 6
Imn & Boven (1963) 0.2 1.4-2 VF 2

VT: wave tunnel VF: wave flume
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Table 2

Summary of Available Ripple Data from Laboratory Experiments
Using Irregular Vaves

Source Diameter Range of Type of Number of
of data of sand significant Deriod aiparatus data points

(no) (a)

lathisen (1989) 0.12 -2.5 VF 9

0.2 -2.5 VF 3

Sato (1988) 0.18 3-5 VT 21

0..56 1.5-3 VT 13

Rosengaus (1987) 0.2 -2.5 VF 8

VT: wave tunnel VF: wave flume
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Table 3

Summary of Available Ripple Data from Field Neasurements

Source Range of Range of lumber of
of data grain diameters significant period data pROitS

(WO (s)

Nielsen (1984) 0.11-0.62 5.7-12.9 39

Miller and Komar (1980)* 0.165-0.287 6-18.1 33

Inuan (1957) 0.081-0.635 5-16 53

*Ripple wavelength only
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105. Since it was shown earlier that the ripple geometry must depend on

at least four non-dimensional parameters this approach may seem

oversimplified. However, as shown in the previous section, it was found

that the initiation of motion could be described by two parameters (Q and

S) with only a weak dependence on one (S*). Furthermore, the variation in

the results from different experimental facilities is so great that a more
sophisticated approach involving more than two parameters does not appear

warranted.

106. Therefore, this approach will be adopted in the remainder of this
section in the analysis of ripple wavelength, height, and steepness. The
data from regular and irregular waves will be analyzed together for the

purpose of comparison. Before the analysis a brief description of the

mechanism of ripple formation will be given.

RiDple formation and disanDearance

107. Regular Waves. It has been observed by Rosengaus (1987) and

Mathisen (1989) that grain motion begins at bed irregularities. The
process of ripple development from an initial irregularity has been

described in detail by Nielsen (1979) and Rosengaus (1987).

108. Initially, before the flow separates at the crest of the
irregularity, the jet flow down the side will tend to create a depression

in front and pile up sand in a hump beyond it. When the flow separates at
the crest a lee vortex is formed which acts to entrain sand from the lee

side and build up the original crest while making the trough deeper.

109. This mechanism acts on both sides of the original ripple creating
two new ones which in turn act as "originator" ripples. While the patch of
ripples thus formed spreads outwards the wavelength and height of the
ripples adjust until they reach an equilibrium.

110. For moderate flow intensities the result is a set of regular,
sharp-crested, two-dimensional ripples. The equilibrium height is the

balance between erosion of the crest by the flow over it and crest build-up

caused by the lee vortices.

111. As the flow intensity increases the ripple height and length
increase while the steepness remains essentially constant. The steepest

sections of the ripples have been observed to have slopes approximately

equal to the angle of repose of the bed material in water.
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112. At higher flow intensities the lee vortices are not strong enough

to maintain the crest leading to a decrease in steepness. The wavelength

remains about the sam while the ripple height decreases. The crests are

more rounded and the ripples become three dimansional. The ripple

ensions are also more variable.

113. Finally when the flow is sufficiently intense the ripples
disappear altogether. The bed is essentially flat. However, the strong

oscillatory notion causes a layer of sand grains to move to and fro on the

bed. This is referred to as sheet flow.
114. IrreLular waves. The above description was based on regular waves

in the laboratory. The only description of the behavior of a bed under

irregular field waves is given by Dingler and Inman (1976). They obtained

instantaneous records of the bed profile using a high-resolution sonar.
115. Their results show that under strong irregular wave notion the bed

can go from equilibrium ripples to a flat bed to developing ripples and

back to a flat bed in a few minutes. This demonstrates the uncertainty
that is present when it is attempted to apply observations made in small-

scale laboratory experiments to the field.

116. Laboratory experiments with irregular waves were made by Rosengaus

(1987), Nathisen (1989), and Sato (1988). Rosengaus and hathisen did

ripple measurements at moderate flow conditions and obtained ripple

dimensions that were statistically steady. Sato (1988) increased the flow

intensity up to sheet flow. He found that the ripple dimensions varied by

about 10% during the ran.

117. The variability between successive waves in Sato's wave record is

about the same as in the wave record given by Dingler and Inuan (1976).

However, the longest period used by Sato was 5 seconds while the large

waves measured by Dingler and Inyan had periods of 10-12 seconds. This is

probably the reason why Sato (1988) did not observe a flat bed during the

run.

118. Kathisen (1989) found that even under moderate wave conditions the,

ripples under irregular waves were more variable than ripples formed by
regular waves of a comparable intensity. A detailed analysis showed that
while the differences in conmonly measured characteristics, such as the

ripple steepness, were small, ripples under irregular waves had crests that
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were more rounded than ripples formed by regular waves.

119. These observations indicate that ripples formed by irregular field

waves may be different from those observed in the laboratory under regular

waves. Therefore the data on geometry of ripples formed by regular and

irregular laboratory waves and by waves in the field will be compared in

the next three sections to examine what differences, if any, are present.

Ripple wavelength

120. The ripple length, unlike the ripple height and steepness, is not

generally regarded as being significant when estimating the equivalent

roughness of a rippled bed. However, the analysis of this parameter may

bring out the connection, or lack thereof, between laboratory and field

ripples. This is especially true because measurements of ripple length in

the field are more reliable than measurements of ripple height.

121. Since the bottom orbital diameter, Ab, is a measure of the

horizontal displacement of a water particle due to the wave motion, it is

natural to seek a relationship between Ab and the ripple wavelength A. It

has been observed by many authors, for example Nogridge and Kamphuis

(1972), that A is proportional to Ab up to a certain critical flow

intensity. Nogridge and Kamphuis stated that beyond this point the ripple

length is constant.

122. Regular waves. Figure 6 is a plot of the ratio A/d against Ab/d

for all the laboratory data listed in Table 1 on ripples formed by regular

waves except those of Sato (1988), Mathisen (1989), and Rosengaus (1987).

The data have been divided into four classes based on the value of the

parameter D*, which is defined by

D, = 10 4du 2  (23)g

123. The parameter D* with an additional factor of (s-i) in the

denominator is the same as that suggested by Hogridge and Kamphuis (1972)

to characterize the flow intensity at which A ceased to be proportional to

1b. It is seen from Figure 6 that for low values of Ab/d the data are

mostly on the straight line, given by

A = 1.31b (24)
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Figure 6. Ion-dimnsional ripple wavelength, Aid, plotted against the non-
dimensional orbital aqplitude, Ab/d, for ripples generated by
regular laboratory waves. The data are grouped according to De.
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that was suggested by Niller and lomar (1980a). As the value of Ab, which

represents the strength of the flow, increases, the data points deviate
from the line and attain maximmm ripple length. Further increase in Ab

results in a slight decrease in wave length, as pointed out by Nielsen

(1979).
124. Uhen the data are grouped according to D* as in Figure 6, it is

seen that t.e deviation from the straight line and the attainment of a

maximum ripple length take place at progressively higher values of Ab/d for

successively lower values of D*. The data with the lowest values of D*,

marked by a + symbol, show an increase in A as Ab increases with a constant

of proportionality lower than that in equation (24). However, these data

do not show a maxim=m ripple length.

125. Plots similar to Figure 6 were made with the data divided

according to many dimensional and non-dimensional parameters, such as the

wave period, grain diameter, and the Shields parameter. It was seen that

data points that lay away from the straight line given by equation (24)

were those for which the shear stress was high. However, D* was found to be

the best at indicating the maximum ripple length.

126. Miller and Komar (1980a) stated that this deviation depends on the

grain diameter. This observation was based chiefly on their Figure 5 which

shows the wave tunnel data of Carstens et al. (1969) and Nogridge and

Kauphuis (1972). Since all the experiments of Carstens et al. were done at

the same period of oscillation, D* for their data depends only on the grain

diameter. This would make it seem as though the deviation depended only on

the grain diameter.

127. Figure 6 shows that the maximum wavelength observed on a sand bed

is greater when D, is small. The physical significance of D* is not

i mmediately apparent. The dependence on d is easily explained as smaller

grains have lower fall velocities. Therefore smaller grains are more

likely to follow the fluid motion resulting in the ripple length depending

on Ab.

128. The presence of the wave frequency in D, suggests that for two

identical beds subject to the same orbital amplitude, the ripples on the

bed subject to the lower frequencies will remain proportional to Ab up to a

higher value of Ab. This may be because the bed has more time to react to
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the lower frequency (longer period) notion leading to a greater dependence

on Ab.

129. Irregular field waves, The available data on ripple length froa
field measurements is plotted, using the sam axes as Figure 6, in Figure
7. It is seen that the data from the different investigations, while
showing considerable scatter, plot in the saw area of the graph. However,

the trend is very different from the variation shown by laboratory waves.

130. Figure 8 shows the sam data as Figure 7 grouped according to the

value of D,. The solid line is equation (24) while the dashed line is drawn

to indicate the trend of the field data. An important point is that the

range of D* for the field measurements, 0.02 to 0.55, is quite different

from the range in the laboratory experiments which was 0.07 to 14.5.

131. Figure 8 shows that several points lie considerably tO the left of

the solid line which represents the relationship of equation (24). The

general trend of the field data is that A decreases with increasing Ab.

This behavior is most clearly shown by the data denoted by the + and *

symbols, which mark the two lowest ranges of D*. Only the data in the

highest range of D*--marked by an x--show an increasing trend similar to the

data from regular wave experiments plotted in Figure 6.

132. Since the different ranges of D* make the comparison of data in

Figures 6 and 8 difficult, field and laboratory data are plotted together

in Figure 9 for two ranges of D,. These ranges are at the upper and lower

ends of the region of overlap in the values of D* for the two sets of data.

This figure shows that for the range of D* from 0.25-0.4 the laboratory and

field data, shown by an x symbol and a * symbol, respectively, behave in the

same way. However, for the lower range of D, from 0.09-0.12 it is clear

that the behavior of the field data, indicated by a +, is quite different

from the laboratory data which are shown by circles. The field data show

decreasing with increased Ab while the laboratory data follow equation

(24).

133. Despite the large scatter in Figure 8 the data show some

organization when grouped according to D*. Therefore, it is difficult to

explain the divergence from laboratory data as caused solely by the errors

involved in making field measurements. One way in which the two data sets

can be reconciled is by redefining the equivalent wave parameters for the
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Figure 7. Ion-dimnsional ripple wavelength, A/d, plotted against the non-
dimensional orbital amplitude, Ab/d, for the field data of Inan
(1957), Miller and Romar (1980), and Nielsen (1984)
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field data. This could be done until the points that fall to the left of

the solid line in Figure 8, which is equation (24), are moved onto it. The

data that show a decrease of A with increase in 1b could then be explained

as the result of flow intensities much higher than those required to cause

deviation from equation (24).

134. However, this would be an arbitrary process and would not

guarantee that the D* values of field and laboratory data falling in the

same area would agree. Atain, a satisfactory adjustment for the ripple

length my not be satisfactory for other ripple dimensions.

135. In any case since the only information known about the field waves

are the root-mean-square wave heights and the average period, an adjustment

of this kind would be a dubious proceeding. All that can be said is that

the ripple lengths observed in the field behave quite differently from

laboratory data. Whether this is due to the incorrect specification of the

equivalent wave or due to some mechanism that is present only when the

waves are irregular is unclear.

136. Irregular laboratory waves. The question of the validity of the

field data can be resolved by examining the data on ripples generated by

irregular waves in the laboratory. Table 2 shows that there are just three

data sets in which the ripple geometry generated by irregular waves has

been measured. Two of these, the data sets of Nathisen (1989) and

Rosengaus (1987), were conducted in the same wave flume and will be

considered together.

137. These data sets will be analyze& by plotting the results for

regular and irregular waves in the same manner as in Figure 6. It is

important to plot the data from regular waves using these experimental set-

ups separately because this will show whether the trend of the regular wave

data is changed by a particular apparatus. It was for this reason that the

regular wave data of Mathisen, Rosengaus, and Sato were not included in

Figure 6. Comparison of the plots of the regular and irregular wave data

will enable the effects of wave irregularity to be seen in isolation.

138. Figure 10 shows that data of Nathisen (1989) and Rosengaus (1987)

for regular and irregular waves. The values of D* are 0.7-0.8 for the

0.12-um sand and 1.1-1.3 for the 0.2-mu sand. The irregular waves are

represented by Hms and the average period. The figure shows that while the
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Figure 10. Non-dimensional ripple wavelength, A/d, plotted against the non-
dimensional orbital amplitude, lb/d, for the regular and
irregular wave laboratory experiments of Ro!engaus (1987) and
Mathisen (1989)
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data from regular and irregular waves do not coincide they both agree quite

well with the trend for regular waves. The data lie on the solid line up to

about Ab/d - 400 and then deviate to the right. Data with a comparable

value of D* are denoted in Figure 6 by circles. Comparing Figure 6 and 10

it is seen that the data of Nathisen and Rosengaus are in agreement with

the other regular wave data.

139. The ripple data of Sato (1988) from regular and irregular wave

laboratory experiments are plotted in Figures 11 and 12, respectively.

Figure 11 shows that the regular wave data deviate considerably from the

straight line equation (24). However, comparison with data that have

similar values of D* in Figure 6 shows that the data in these higher ranges

of D* in Figure 11 are consistent with the other regular wave data. The

data in the lowest range of D*, while showing an icrease in A with

increasing Ab that is in agreement with the trend of the other regular wave

data, plot below the comparable data in Figure 6.

140. Figure 12 shows the data on ripples formed by irregular waves

using the same apparatus. Comparing with Figure 11 it is seen that there

is a difference in the trend of the tvo data sets. For example, data with

D, around 0.8, marked by a *, lie a little below the corresponding regular

wave data and show a slight decrease in A with increasing Ab. The greatest

difference is seen in the data with the lowest value of D,, marked by a +

symbol. The irregular wave data do not show the increase in A with Ab that

is shown by the regular wave data.

141. These observations must be regarded as tentative because they are

based on a very small number of data points. However, it does seem that

the irregular wave ripple data of Sato (1988) differ from the regular wave

data in a manner similar to the way in which the field data differ from the

regular wave data. For example the trend in Figure 11 is fairly close to

the solid line while the trend in Figure 12 seems to be more in agreement

with the dashed line which shows the trend of the field data. This

similarity lends support to the view that the difference between field and

laboratory data is due to the irregularity of the field waves and not

entirely to errors in measurement.

142. Comparing Figures 10 and 12 it is seen that even when the value of

D* is comparable the irregular wave data of Mathisen aLd Rosengaus differ
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Figure 12. Ion-dimensional ripple wavelength, A/d, plotted against the non-
dimensional orbital amplitude, Ab/d, for the irregular wave
laboratory experiments of Sato (1988)
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fron those of Sato. The reason is that in the experimnts of Sato the

shear stress, as measured by the parameter •, was much higher than in the

other experiments. Sato's experiments had • in the range 0.07-0.79 with an

average of 0.36 while the experiments of Mathisen and Rosengaus had

ranging from 0.08 to 0.21 with an average of 0.16.

143. Nunry of A-Ah relationshi_. The analysis of the relationship

between the ripple length and the orbital amplitude shows that most field

data, with the waves specified by the root-man-square wave height and

average period, do not follow the simple relationship given by equation

(24). This deviation is most marked for low values of D*. Similar behavior

was observed in the irregular wave data of Sato (1988) but not in the data

of Mathisen (1989) and Rosengaus (1987).

144. These observations can be explained by the following argument.

Since the range of grain diameters in all these experiments is 0.1-0.6 m

differences in D, are mainly due to differences in the wave period. The

differences in ripple geometry caused by regular and irregular waves ot the

same intensity has been attributed by Mathisen (1989) to the domination of

the ripple generation process by the larger waves. This would explain why

ripples generated by irregular waves do not follow equation (24).

145. However, the fact that the data with hig& values of D* are quite

close to this equation suggests that this change in the process is seen

only when the wave period is large enough, i.e., when D* is small. This is

to be expected since the larger waves will have a more significant effect

if they act for a longer time.

146. Comparing the data of Rosengaus and Mathisen with the data of Sato

it is seen that there is also an effect of the Shields parameter. For a

given period, a wave that, for example, is twice as large as the average

will have a greater effect on the bed when the average wave intensity, as

measured by the Shields parameter, is higher.

147. For a wave period of 8 seconds and a grain diameter of 0.2 m,

which are typical of the field, D* is found to be 0.126. As shown in Figure

9 the field and laboratory data behave quite differently at this value of

D*. Therefore the use of relations based on regular wave laboratory data

to predict ripple geometry in the field under these conditions could result

in considerable error. Also the data from irregular wave laboratory
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experiments are too few and conducted at too high a value of D* to be

applied to field conditions.

148. Thus it can be concluded that the best method of predicting field

ripple geometry, at the present time, is through relations based on field

measurements. Simple equations for predicting the ripple length, height,

and steepness for field ripples will be developed in the next three

sections.

149. Prediction of the ripple length. This is done by plotting the

ratio A/Ab against a non-dimensional parameter that represents the

intensity of the flow. Nielsen (1979) suggested that the parameter U,
defined by

S. -(25)

was able to correlate the data on ripple length successfully. He plotted

the data of Inman (1957) and Dingler (1975) against 0 and obtained a good

correlation. However, when the data presented by Nielsen (1984), which

were collected in shallow water, are plotted on the diagram they do not

correspond with the earlier data.

150. Before developing a predictive relation it is necessary to decide

upon the method that is to be used to determine the expression that gives

the best fit. A commonly used measure is root-mean-square error r, defined

by

r = ! n-1 (26)

where y is the measured value and j the predicted value and n is the number

of data points.

151. The drawback of this measure is that while it gives an idea of how

far the proposed line is from the data it does not give any measure .of how

much that difference is when compared to the actual value of the data

point. A more suitable measure is the relative error e, defined by
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in(e)= [1 !(In(y) In(f))2] (27)

152. When e is minimized the resulting fit is a least-squares fit on a

log-log plot. A perfect correlation will result in e being equal to 1.

This measure of the error is more suitable than r when the data span

several orders of magnitude. A value of e - 1. 2, for example, would

indicate an error of *20% in the curve fit.

153. It was found that the available field data on ripple length was

well correlated by the non-diuensional parameter 1, defined by

X (28)

where S* is defined in equation (13). Figure 13 shows the ratio A/Ab

plotted against the parameter X for the field data. The solid line is the

proposed relation for ripple lengths in the field and is given by

S1.710.5 I < 3 29
-- = (29)

Ab 2.2Z-0.-75 X > 3

The value of the relative error for this relation was 1.48. If the root-

msa square error is used it results in a significant bias towards the

larger values. Since equation (29) is an empirical fit it should only be

applied in the range. 0.2 < I < 50.

154. Another parameter that correlates the field data well is i(Ab/d)

which was suggested by Sato (1987). When a relation of the same form as

equation (29) is fit to the data using this parameter e is found to be

1.55. If 8 is used as the dependent variable, as suggested by Nielsen

(1979), e is found to be 2.36. 1 is used in this report instead of the

parameter of Sato because it is found to correlate other aspects of field

ripple geometry as well as the friction factor observed in laboratory

experiments.

155. The data from laboratory experiments with irregular waves are

plotted in Figure 14 along with a line representing equation (29) and a

dashed line showing the trend of the data obtained using regular waves.
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The data from Nathisen (1989) and Rosengaus (1987) plot slightly above the

line for the regular wave data while the data of Sato (1988) lie between

the curves for regular wave and field wave data. This is in agreement with

the analysis in the preceding section.

156. Therefore equation (29) is proposed as a new relation for

predicting the length of field ripples. For ripples formed by regular

waves in the laboratory however, it is found that using the parameter X

does not result in a better correlation than if the parameters suggested by

Nielsen (1979) and Sato (1987) are used. For this reason, and also because

the interest is in predicting ripples in the field, relations are not

developed for ripples formed by regular laboratory waves.

157. Prediction of the ripple height. Is in the case of the ripple

length, the bottom orbital amplitude is selected to non-dimensionalize the

ripple height. The ratio V/Ab is plotted against X in Figure 15 for the

field data. The solid line is the proposed relation which is given by

0.27X-0-5 1 < 3
S= (30)

0.47X-1.0 X > 3

168. The data plotted at the bottom of Figure 15, i.e., with V/Ab -

10-$, are the points where a flat bed was observed. This suggests that the

disappearance of ripples occurs around the point X = 50. The value of the

relative error obtained using equation (30) was 1.55.

159. The ripple heights obtained using irregular waves in the

laboratory are plotted in Figure 16 along with the curve showing the trend

of the regular wave data and the proposed relation given by equation (30).

Here too it is seen that the data of Mathisen and Rosengaus lie somewhat

above the curve for the regular wave data. However, comparing Figures 15

and 16 it is seen that the data of Sato plot only slightly above the region

occupied by the field data. The flat-bed data points of Sato are also not

in agreement with the field data.

160. Prediction of ripple steegness. Equations (29) and (30) can be

combined to give a relation for the steepness as
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0.16 1 < 3S- (31)

0.211-0-35 1 > 3

The value of the relative error for this relation is 1.27. Sato (1988)

used the parameter 0(ab/d)1/ to correlate the field data on ripple

steepness. When a relation of the form suggested by him is fit to the data

the value of the relative error is 1.31.

161. Equation (31) is plotted in Figure 17 along with the trend of the

regular wave data and the irregular wave data from the laboratory. It is

seen that the steepness of the field ripples is only slightly lower than

that of the ripples formed by regular waves. The data of hathisen (1989)

and Rosengaus (1987) lie close to the regular wave data as expected but the

data of Sato (1988) show a lower steepness than the field data. This is

because the data of Sato show longer ripple lengths and smaller ripple

heights than the field data for comparable values of I. Sato (1988) used a

wave tunnel that was 21 cm high. The largest ripple height measured under

irregular wave conditions was 4.9 cm. It is possible that these ripples

did not grow to their full height due to the limited tunnel height. This

may be the reason for the low ripple heights observed by Sato.

162. Disappearance of ripples. Sato (1988) analyzed data from regular

and irregular laboratory experiments and from the field and proposed a

criterion for the disappearance of ripples based on the parameter # and

Ab/d. However, examination of his Figure 12, which is a plot of the field

data, reveals that while his criterion is good for laboratory ripples it is

only approximately true for the field data.

163. A simpler relationship that is as accurate can be obtained by

observing the flat bed data in Figure 15. From this figure an approximate

criterion for the disappearance of ripples can be derived as

X > 50 (32)

61.



1-- 

+
+ 

0+ + + + + - '

+ +

LEGEND 4

o Irregular - Mathisen & Rosengaus
+ Irregular - Sato

7 Equation (31)
o Trend of regular data

10-

101 1 10 102 10 3

x

Figure 17. Ripple steepness, ti/A, against X for the irregular wave
laboratory data of Nathisen (1989), Rosengaus (1987), and Sato
(1988) along with equation (31) and a line showing the trend of
the regular wave laboratory data

62



PART IV: MOVABLE BED ROUGHNESS

164. The relationship between the geometry of ripples and the wave

notion that created then was investigated in the preceding section.

Predictive relationships for the ripple geometry under field conditions,

with the waves specified by the root-mean-square wave height, Hlm, and the

average period, were proposed. The objective of this section will be to

review the relationship between bed geometry and the friction factor in

order to propose relations that could lead to the establishment of friction

factor relationships to be applied in the field.

165. It was concluded in Part II that the only reliable method of

measuring the friction factor on a movable bed was through measurements of

the energy dissipation in the wave boundary layer. Therefore the

investigation of the effects of the bed geometry on the friction factor

requires the simultaneous measurement of the wave conditions, the

associated bedform geometry, and the resulting energy dissipation.

166. Vave energy dissipation in the field is measured by recording the

change in wave height between two points. After allowances are made for

changes due to refraction and shoaling the dissipation is calculated from

the wave attenuation ascribed to bottom friction. Such studies have been

carried out by Iwagaki and Kakinuma (1963, 1967) and Treloar and Abernathy

(1978). However, the ripple geometry was not recorded in any of these

studies.

167. This means that the analysis in this chapter will rely entirely on

laboratory experiments, most of which have been conducted using a regular

wave motion. It was found in Part III that wave irregularity resulted in

the ripple geometry differing from that formed by regular waves. This

meant that ripple data from laboratory regular wave experiments were not

applicable under field conditions.

168. Bearing this in mind it would seem overly optimistic to expect the

results of energy dissipation experiments with regular waves in the

laboratory to be relevant to irregular field waves. Nevertheless this is

the only way in which the field ripple geometry relations developed in Part

III can be used to predict the bed friction. The alternative is to rely on

field studies that have been done without observations of the bottom
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Table 4
Swunary of Available Laboratory Data on Energy Dissipation under Waves

Type of
apparatus
and wave Diameter Range of Number of

Sources of data condition of sand periods data points
(M) (s)

Mathisen (1989) WF, R 0.12 2.6 6
HF, IR 0.12 2.6 11

0.2 2.6 5
Rosengaus (1987) VF, R 0.2 2.2-3 17

VF, IR 0.2 2.6 10
Lofquist (1986) WT, R 0.18 3.9-14.2 20

0.55 2.7-9.4 62
Sleath (1985) OB, R fixed bed 0.6-18.1 61
Carstens et al. (1969) VT, R 0.19 3.5 5

0.297 3.5 15
0.585 3.5 20

Bagnold (1946) OB, R fixed bed 0.3-5.6 ,59

WF: wave flume; HT: wave tunnel; OB: oscillating bed
R: regular waves; IR: irregular waves
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geometry.

169. The available experimental data on energy dissipation under waves

are summarized in Table 4. The details of the experiments and the

derivation of the friction factor from the measurements are discussed in

Ippendix A. It should be noted that the data sets of Sleath (1985) and

Bagnold (1946) for energy dissipation over a fixed, rippled bed are

included in Table 4. These data are included because the energy

dissipation over a movable bed is due to a combination of the form drag

dne to the bedforus, the skin friction due to the sand grains, and the

effect of a moving layer of grains. The analysis of the fixed bed data

should help to determine the relative magnitude of these effects.

Energy Dissipation over a Fixed Bed

170. Bagnold (1946) and Sleath (1985) measured energy dissipation over

beds with fixed artificial ripples using an oscillatory bed apparatus.

These results have been analyzed in detail by Sleath (1985). For our

purposes the chief use of these data is to establish a link between the

ripple geometry and the equivalent bed roughness.

171. The simplest relation is to set the equivalent roughness, kn, to

be proportional to the ripple height, i.e.,

kn -v (33)

Grant and Madsen (1982) concluded that wave-generated ripples should be

quantified by both their height and their concentration and suggested the

form

kn Ovq (34)

172. The measured values of the friction factor over the fixed bed can

be converted into a value of kn using the Grant-Madsen friction factor

relation in equation (7) and the known value of the bottom orbital

amplitude. The ratio kn/9 is plotted in Figure 18 against the flow Reynolds

number Re defined after equation (2). It should be noted that for a fixed
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bed the parameters s, d, and g are not present resulting in the flow being

described by just one non-dimensional parameter.

173. The figure shows that while some points in each data set show a

trend in increasing kn/V with increasing Re most of the points are clustered

around a constant value. This value, which is the constant of
proportionality in equation (33), is seen to be around 5 for the data of

Bagnold and about 3 for the data of Sleath.

174. Sleath (1985) used a sinusoidal profile for his artificial ripples

with a steepness of 0.23 while Bagnold (1946) used a profile composed of

circular arcs which formed sharp-crested ripples with a steepness of 0.15.

Sleath (1985) found that the low values of the friction factor, and

therefore of kn/q, were observed during the transition from laminar flow

when flow separation and vortex formation were just beginning.

175. Since the flow over sand ripples is most often rough turbulent

these points are not important for this analysis. Sleath argued that the

effect of transition was less apparent in the data of Bagnold because the
sharp crest of the ripples in those experiments would have caused

separation at the crests even at low flow velocities.

176. Both Sleath and Bagnold used a constant value of the ripple

steepness throughout their experiments. Therefore it is not possible to

determine which of equations (33) and (34) provides a better representation

of the equivalent roughi-ss. If the ratio kn/(q 2/A) is plotted against Re

the constant of proportionality in equation (34) is found to be 33 and 12.5

for the data of Bagnold and Sleath, respectively.

177. Equilibrium ripples formed by waves are sharp crested and have

slopes of about 30". In these respects they resemble the profile used by

Bagnold (1946) which had a crest angle of 120". However, these artificial

ripples had a very sharp edge, a feature that sand ripples can not have.

Observations of ripples under irregular waves by Mathisen (1989) have shown
that the crests are more rounded than if the waves were regular. Thus the

geometry of field ripples is probably somewhere in between the two extremes

represented by the artificial beds used by Bagnold and Sleath. It should

also be noted that both these authors used a smooth surface for their

ripples while sand ripples have a rough surface. This may result in the

skin friction felt by the sand ripples not being reproduced in the
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laboratory. Uhen the ripple height is much larger than the grain diameter

the skin friction is expected to be such smaller than the form drag.

However, the roughness of the ripple surface will influence the separation

at the crest.

178. In summary it can be said that the analysis of the fixed bed

experiments show that both equations (33) and (34) are plausible

representations of the equivalent roughness of a rippled bed. The constant

of proportionality for sand ripples can be expected to be between 3 and 5,

and 12.5 and 33 for equations (33) and (34), respectively.

Energy Dissipation over a Movable Bed

179. The results of energy dissipation measurements over movable sand

beds will be analyzed to determine the appropriate equivalent bed roughness

scales in this case. It is seen in Table 4 that there are only four data

sets where simultaneous measurements of ripple geometry and energy

dissipation have been made. Some aspects of these experiments are

discussed in Appendix A.

180. Of these four data sets the largest is the set presented in

Lofquist (1986). Some of these measurements were made under conditions

that resulted in the end effects having significant effects on the ripple

geometry. For this reason these data were not used in the analysis of

ripple geometry.

181. However, our purpose in this section is to quantify the energy

dissipation over ripples whose geometry is known. Analysis by Lofquist

(1986) has shown that there are no significant differences between the

shear stresses observed over the "natural" and the "distorted" ripples.

Therefore all the equilibrium measurements of Lofquist will be used here.

182. Lofquist also measured the shear stress during ripple growth from

an initially flat bed. These ripples are not in equilibrium with the flow

and it could be expected that this would affect the energy dissipation.

The results show that it takes from 30 to 100 wave cycles to increase the

ripple height by 1 cm. Since this is quite a slow rate of growth the effect

of disequilibrium on the shear stress is likely to be small. Furthermore

these data increase the ranges of ripple height and steepness over which
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dissipation has been measured. For these reasons the results from the

growing ripples will also be considered in the analysis though they will

not be used to establish predictive relations.

183. The best fit relations established in this section will be based

on the relative error defined in equation (27). Since the ultimate

objective is to predict the friction factor and also because it is the

friction factor that is measured, the relative errors given will be those

for the predicted friction factor and not for the equivalent roughness. To

avoid the analysis being dominated by the large number of data in Lofquist

(1986) the best-fit coefficient for the other sets will also be reported in

most cases.

Regular Waves

184. The four data sets on energy dissipation over equilibrium ripples

under regular waves are those of Carstens et al. (1969), Lofquist (1986),

Rosengaus (1987), and Mathisen (1989). Since hathisen used the same

apparatus as Rosengaus these two data sets will be considered together.

185. The data from fixed bed experiments suggested that either equation

(33) or (34) could be used to define the equiva:ent roughness. The ratio

kn/q is plotted against the Shields parameter, #, in Figure 19 for the data

on equilibrium ripples together with the data from the growing ripples.

The value of kn was calculated using equation (7) along with the measured

values of fw and Ab.

186. Although the scatter of the data is quite high the figure shows

that the ratio kn/I is well represented by a constant value. The scatter of

the data is higher at low flow intensities for reasons discussed in

Appendix A. The best-fit values of the constant of proportionality in

equation (33) are 5.2, 4.0, and 3.0 for the equilibrium ripple data of

Carstens et al., Lofquist, and Mathisen and Rosengaus, respectively. The

overall best fit value is 4.0. The data from the growing ripples are

consistent with the equilibrium ripple data of Lofquist.

187. When equation (34) is used to scale the equivalent roughness the

overall best fit constant is 26.0. However, the value of e is 1.35 while

it was 1.27 for the overall fit using equatV '33). When the individual

best fits for each data set are compared the aes obtained using

equations (33) and (34) are 1.27 to 1.46, 1.22 to 1.28, and 1.25 to 1.22
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for the data of Carstens et al., Lofquist, and Mathisen and Rosengaus,

respectively.

188. These two representations are compared in Figure 20 which is a

plot of kn/9 against the ripple steepness 1/A. It is seen that the solid

line representing the equation

kn" - (35)

is a better fit than the dashed line which is equation (34) with a constant

of 26. The use of an expression that had the form of equation (35)

multiplied by some power of the ripple steepness did not improve the fit

given by equation (35). Therefore this simple expression is proposed to

predict the equivalent roughness of a rippled bed for regular waves.

189. The measured values of the friction factor are plotted against

Ab/kn in Figure 21 with kn calculated from equation (35), along with the

Grant-Madsen friction factor relationship of equation (7). If equation

(35) is a perfect correlation all the points should fall on this curve. It

is encouraging that the data from growing ripples measured by Lofquist

(1986) are also well represented by the curve even though they were not

used to find the best-fit coefficient in equation (35).

190. It should be recalled that the fixed bed experiments of Sleath

(1985) and Bagnold (1946) gave values of 3 and 5, respectively, for the

constant in equation (36). The range is the same as was obtained for the

three data sets for movable sand beds. This indicates that the bulk of the

energy dissipation over a rippled sand bed is due to the form drag created

by the ripples and not to the skin friction caused by the sand grains,

contrary to the results obtained by Vitale (1979).

191. Jonsson (1980b) suggested that the equivalent roughness, kn, for a

movable bed could be represented by kn = 250 d. The ratio kn/d is plotted

against the Shields parameter # in Figure 22. The overall fit to the

equilibrium ripple data results is a relative error of 1.44 for the

relation kn = 480 d. While this value is different from that suggested by

Jonsson (1980b) it should be remembered that he used a different friction

factor relation to calculate kn. It could be argued that the data in Figure

21 could be fit better by a relation of the form kn/d - f(#).
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However, it was found that using an expression t(#) - alb only decreased the

relative error to 1.43. This is greater than the error of 1.27 obtained
using equation (35). Therefore it was concluded that kn was not well

represented by a function of d.

192. Figure 22 shows that while the data as a whole show considerable

scatter, some individual data sets are well represented by a constant value

of kn/d. Uhen this relation is fit to the individual data sets the
resulting errors are 1.25, 1.44, and 1.23 for the data of Carstens et al.,

Lofquist, and Nathisen and Rosengaus, respectively. It is seen that the
errors for the data of Carstens et al. and Nathisen and Rosengaus compare

favorably with the fit using equation (33). However, it was also found

that the error obtained with kn/d set to a constant was 1.75 for the growing

ripple data of Lofquist. Thus it is seen that kn correlates well with the
grain diameter only for the data sets that had equilibrium ripples with a

"natural," i.e., not affected by end conditions, geometry.

193. This indicates that the correlation between kn and d for "natural"

ripples occurs because there is a correlation between d and the ripple
geometry for "natural" ripples formed by regular waves. It was found in
Part III that this geometry is quite different from that seen in the field.

Therefore the use of regular wave laboratory data to develop a relation
between the grain diameter and the equivalent roughness would result in an

expression that is not applicable in the field.

Effect of Sediment Transport

194. Figure 19 shows that there are two data points, from experiments

with a large value of #, that show roughnesses much larger than what is

predicted by equation (35). These points correspond to the two points in

Figure 21, marked by + symbols, that lie above the solid line at a value of
Ab/kn of around 15. This was attributed by Grant and Madsen (1982) to the
increased sediment transport that takes place when the shear stress, and
therefore #, is high. It is seen from the figure that only Carstens et al.

have carried out measurements of dissipation in the range # > 0.3.
195. Grant and Madsen (1982) derived an expression for the equivalent

roughness due to a near-bottom layer of intensive sediment transport.

Their analysis suggested that this roughness, indicated by kn9, was of the

form
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ksm - O.74 3 (38)

where #c is the critical Shields parameter for the initiation of notion.

Nielsen (1983) suggested a relation of the form

k. - d(# - #c)* (37)

Another equation for kng was suggested by Raudkivi (1988). It is shown in

Appendix A that the friction factors he derived from the data of Carstens

et al. are open to question. Therefore his equation will not be analyzed

here. Wilson (1989) suggested an expression of the form

kns - d# (38)

that was based on the results of experiments using steady flow. Although

it was not clear what shear stress is to be used to calculate the Shields

parameter in this equation, the fact that it corresponds to sheet flow

conditions indicated that the total bed shear stress should be used here.

196. In order to examine the validity of these three equations it is

necessary to have energy dissipation measurements made under conditions of

sheet flow. The only measurements known that approximate these conditions

are five runs from Carstens et al. (1969). These were flat bed runs

performed at orbital amplitudes much higher than those required for the

spontaneous formation of ripples. This means that a moving layer of sand

must have been present on the bed.

197. The ratio kns/d obtained from these five runs is plotted against

in Figure 23 along with the best-fit forms of equations (36) and (37).

These best-fit forms have multiplicative constants of 850 and 360 for
equations (36) and (37), respectively. It is seen from the figure that

equation (37) is the best at matching the trend of the data. Since the

measured friction factor can be used to obtain the total shear stress for

these runs a best-fit coefficient for equation (38) can also be obtained.

This was found to be 60, which was larger than the value of 5 obtained by

Wilson (1989) from steady flow measurements.

198. However, it should be noted that laboratory data on ripple
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geometry show that sheet flow actually begins after the Shields parameter

exceeds a value of about 0.8. Therefore if these runs had been continued

they would ultimately have resulted in a rippled bed being formed. A final

decision on the validity of these expressions should not be made until data
from the real sheet flow region are available.

199. Thus it appears that the movement of grains on a flat bed can
cause an effective roughness that is more than two orders of magnitude

greater than the grain diameter. The effect of grain motion on a rippled

bed can then 'e accounted for by defining the equivalent roughness as

kn = knf + kns (39)

where knf is the roughness due to the bedforms and is quantified by equation
(35). It was attempted to fit the observed values of kn using equation (39)

with kns calculated using each of equations (36), (37), and (38).

200. The best fit was obtained when equation (36) with a moditied
coefficient was used to represent the roughness due to grain motion. The

resulting equation is

kn = 47 + 340d(i/ - 0.7jc)2 (40)

The value of the relative error was 1.26 for the data from equilibrium

ripples. This is only a small improvement over the value of e when the
grain motion was disregarded due to there being only a few data points in

the region of high shear stress. The coefficient used for the sediment

transport term has been reduced to 340 from the value of 850 that was the
best fit to the flat bed data. This may be because the sediment transport

flat bed runs included some bed form drag as the bed becomes slightly

rippled during those runs.

201. When equation (37) is used to calculate kns in equation (39) the

resulting best fit has an error of 1.29. The fit is not as good as with
equation (36) because it dies down more slowly at small values of #. It is

necessary for the function used for kns to be small at low # because it is

only the fit to the data of Carstens et al., which were over a large range
of 0, that are improved by the inclusion of the sediment transport term.
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The fits to the other data sets were not improved by the addition of this

term as they were mostly at very low values of #.

202. Figure 24 shows the measured values of the friction factor plotted

against Ab/kn with kn calculated from equation (40). The solid line

represents equation (7). Comparing Figures 21 and 24 it is seen that the

most important difference is that the two points that were above the solid

line in Figure 21 with Abkn around 15 are moved to the left in Figure 24 and

lie closer to the solid line. All the other data points have been shifted

a small distance to the left due to the inclusion of the sediment transport

term in equation (40).

203. Therefore the only significant effect of the sediment transport
correction is to account for the two aberrant points in Figure 19. It

should be noted that Figure 19 shows that there are two other data points

in the set of Carstens et al. with the Shields parameter between 0.4 and

0.5 that do not show an increased roughness. This raises the question of
whether the two aberrant points are due to experimental error.

204. Thus both equations (35) and (40) are proposed as predictive
relations to calculate the equivalent roughness of a rippled sand bed.

Equation (35) has the advantage of simplicity and ease of calculation.

Equation (40) includes a correction for the effect of sediment transport

that has some support from the experimental data but is more complicated in

form. The final decision on which equations should be applied is deferred

until they are compared over a range of flow conditions in Part V.

Irregular Waves

205. The only measurements of energy dissipation over a rippled sand
bed by irregular waves are those of Rosengaus (1987) and Mathisen (1989) in

a wave flume. Before discussing these results it is necessary to define

energy dissipation and the friction factor under an irregular wave motion.

The energy dissipation factor under regular waves was defined in equation

(11) which relates the bottom velocity to the energy dissipation.

206. In this report irregular waves are considered to be represented by
the root-mean-square wave height, Hms, and the average period. Using these

values along with the flow depth it is possible to calculate a bottom

velocity, Ubums, that represents the bottom wave motion. The energy

dissipation that is relevant is the total loss of energy from all
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components of the wave field that is due to bottom friction. With these

definitions an energy dissipation factor, ferns, for irregular wave notion

can be defined by

Ed = 2 feruburs (41)

where Ed is the total energy dissipation.

207. Rosengaus (1987) and Nathisen (1989) measured the energy

dissipation for each of several frequency components they combined to

obtain an irregular wave motion. Thus the total dissipation can be

obtained by sunming these values. The value of Hms is found from the

amplitudes of the components. The value of the representative friction

factor can then be calculated from equation (41).

208. This value together with the representative bottom orbital

amplitude Abrns defined in equation (28) are used to calculate the

equivalent bottom roughness for these experiments. The ratio kn/q is

plotted against the Shields parameter, #, for the regular and irregular

wave data of Rosengaus and Nathisen in Figure 24. The representative wave

was used to calculate the Shields parameter.

209. Figure 25 shows that the values of kn/q for the irregular waves

are slightly less than those for the regular waves. The best fit value for

this ratio is 2.5 with a relative error of 1.39 for the irregular wave data

while it is 3.0 for the regular wave data. Use of kn/V = 3 for the

irregular wave data results in the relative error increasing to 1.41. This

shows that the relative error is not very sensitive to the constant of

proportionality used due to the scatter of the data.
210. It should be noted here that if the significant wave had been used

as the representative wave the bottom velocity used in equation (41) would

have been greater than ubrms by a factor of 4. This would have resulted in

the calculated friction factors being reduced by a factor of 2V leading to

equivalent roughnesses that would be much lower than those obtained with
Hras as the representative wave and also much lower than the values obtained

with regular waves. Therefore it is seen that the use of H,.8 leads to a

scaling of the equivalent bottom roughness that is much closer to that

obtained from regular waves than the scaling calculated using the
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significant wave.

211. The objective of this part is to develop a relation between ripple

geometry and the equivalent bottom roughness that would be applicable under

irregular field waves. Expressions for the equivalent roughness under

regular waves were proposed in equations (35) and (40). The data plotted

in Figure 24 are the only data available at present that can be used to

decide whether this relationship is applicable for irregular waves as well.

212. Uhile the best-fit value for kn/V is smaller for the irregular

wave data the use of the best-fit value for the regular wave data does not

change the relative error significantly. Therefore, bearing in mind that

both the number of data and the range of # are limited, and considering the

errors involved in predicting the ripple geometry in the field, it seems

reasonable to ignore this difference and consider that the equivalent

roughnesses under the irregular and regular waves in these experiments are

the same.

213. The best-fit value for the ratio kn/V obtained from the data of

Mathisen and Rosengaus is smaller than the value in equations (35) and

(40). However, the data of Carstens et al. suggest a higher value than

what is used in these expressions. These differences can be ascribed to

the differences in experimental technique. Thus, it can be concluded that

these equations are the best relations for the prediction of the equivalent

roughness that can be made using the available measurements of energy

dissipation over a movable bed. It should be kept in mind that these are

based mainly on regular wave data at low values of # and that their

extension to high values of # and irregular waves is based on the very

small number of measurements made under these conditions.
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PART V: EXAMPLE CALCULATIONS AND COMPARISON WITH OTHER RELATIONS

Proposed Models

214. The predictive relations for ripple geometry in the field that
were developed in Part III can be combined with the expression for the
equivalent roughness proposed in Part IV to calculate the friction factor
that can be expected in the field over a sand bed. The required parameters
are the root-mean-square wave height, the averaged period, the water
temperature, and the sand grain diameter.

215. It was found that the field ripple geometry was well correlated by
the parameter X, defined by

X = ((sl~gdi/a(42)

where ubms is the bottom velocity obtained from the representative wave

that has a height equal to Hrm, the root-mean-square wave height, and a
period equal to the averaged wave period.

216. The ripple height is given by

0.271-0-5 I < 3Abru, 0.47X-1.o X > 3

where Abru is the orbital amplitude based on the representative wave. This
relationship is observed to exist for the range 0.2 < I < 50. The

equivalent roughness kn is then found from either the simple form of
equation (35), i.e.,

kn - 49 (44)

or from the m.-3 complicated form given by equation (40), i.e.,

k. - 41 + 340d(04 - 0.7V~I)2 (45)
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which includes a correction for the effect of sediment transport. The use

of kn and Abrm in equation (7) results in a friction factor that can be

used to predict the total energy dissipation by the use of equation (41).

Exanmle Calculation
217. For example let us consider a wave field with a root-mean-square

height of 1.5 m and an average period of 6 seconds propagating in a water

depth of 10 m over a sand bed that has a diameter of 0.2 m. The bottom

orbital amplitude is found to 0.44 m from equation (24). Assuming v -

0.01 cm2/s this gives the value of X from equation (42) as 23.0. The ripple

height corresponding to this value of X is 0.9 cm from equation (43).

218. The Shields parameter for these conditions is found to be 0.25

from equation (15) while the critical Shields parameter is 0.05 from Figure

5. Using these values kn is calculated as 3.6 cm and 4.4 cm from equations

(44) and (45) respectively. The Grant-Madsen friction factor relationship

(equation (7) or Figure 2) is then used to calculate the friction factor.

The values for this case are 0.051 and 0.057 when equations (44) and (45)

are used to calculate the equivalent bottom roughness.

219. This example can also be used to get an idea of how much

uncertainty there will be in the final predicted value of the friction

factor. The relative error in the ripple height prediction was found to be

1.55 in Part III. Thus the calculated ripple height could range from

0.58 cm to 1.4 cm. The friction factors corresponding to these ripple

heights are found to be 0.0414 and 0.065 respectively, when equation (44)

is used. Since the relative error in calculating the friction factor from

the geometry is 1.27 from Part IV, this would result in range of values

from 0.0326 to 0.0826 for the friction factor about the calculated value of

0.051. This range corresponds to a relative error of around 1.6. Thus we

see that the total relative error is less than the multiple of the two

component errors because the friction factor is not very sensitive to

errors in the equivalent roughness.

220. For the remainder of this section the prediction of the friction

factor using equations (44) and (45) will be referred to as models 1 and 2,

respectively.
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Other Existing Models

221. Grant and Madsen (1982) suggested that the equivalent roughness
for a rippled bed was given by

kn - 28ql + 504d(,f - 0. 7VP2 (48)

This equation will also be used to calculate the friction factor with the

geometry obtained from the field relations equations (30) and (31) in order

to see how the results compare with those obtained from equations (44) and

(45).

Model 4

222. The only previous model proposed for the friction factor under

field conditions was that of Nielsen (1983). He based his fornmlation on

the significant wave height and used equation (6) with an upper limit of

0.3 as his friction factor expression. This model calculated kn by the

equation

kn = 8 + 190(# - #c) 1/ 2  (47)

The ripple height was predicted by the relation

IL. = 210-1.85 (48)
Ab

where 0 is defined by equation (25) and the ripple steepness was calculated

from

= 0.342 - 0.34#0-25 (49)

with # calculated assuming kn = 2.5d in equation (6).

223. Equations (48) and (49) for field ripple geometry were put forward

by Nielsen (1981) and were based on the significant wave height. However,

when considering energy dissipation Nielsen (1983) suggests the
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root-mean-square wave height as the equivalent wave height for irregular

waves. In other words the energy dissipation is calculated from equation

(41) using the friction factor derived from equations (47), (48), (49)o and

(6). This means that as far as the energy dissipation is concerned this

friction factor can be compared directly with the value obtained from the

model developed here.

Model 5
224. Another type of predictive relation for the friction factor is a

direct prediction from the wave and sediment parameters, i.e., a prediction

that does not consider the ripple geometry. An example is the equation

proposed by Vongvissesomjai (1987, 1988). He obtained this relation by

fitting it to the data of Carstens et al., and Lofquist (1980) along with

data where the friction factor was not measured directly. The result was

the relation

- 0.0 7 70-[-3'1 0.1 ,S0.4, (50.

Model 6

225. Madsen et al. (1990) obtained a formula similar to equation (48)

based solely upon their laboratory measurements of energy dissipation under

irregular waves. They used the equivalent bottom orbital velocity and

amplitude defined in equations (18) and (20) to define the equivalent wave

conditions, a method that is different from the root-mean-square wave

approach. However, if the comparison is done for a specified bottom

orbital diameter and period the resulting friction factors will be

comparable as far as energy dissipation and shear stress are concerned.

The equation suggested by Madsen et al. is

fw = 0.29(#/#) 1-*5  (51)

with # calculated from equation (15).

Comparison of Models

226. Thus we have outlined six models that could be used to predict the
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friction factor in the field. The first three are based on the ripple

geometry as given by equations (30) and (31) with the equivalent roughness

calculated from equations (44), (45), and (46) respectively. The friction

factor is then found by using equation (7) or from Figure 2.

227. The fourth model is the formulation of Nielsen (1983) with the

geometry calculated using equations (48) and (49), the roughness from

equation (47), and the friction factor from equation (6) with an upper

limit of 0.3. The fifth and sixth models are the direct predictions of

equations (50) and (51). It should be remembered that with the exception

of model 4, which uses the significant wave parameters, all these models

are to be used with the root-mean-square wave parameters.

228. These relations will be compared under conditions for which

ripples are known to exist in the field in order to see how the predictions

behave over a range of conditions. Since the models are formulated in

terms of different non-dimensional parameters it is not possible to plot

all the predicted values against the same non-dimensional variable.

Instead, the comparison will be done for a specific sand grain diameter.

It was decided to select d = 0.2 mm because this is a typical value seen in

the field.

229. Two further parameters are needed to specify the wave motion.

This will be done by specifying an average period and calculating the

friction factor from each model for a range of values of Abms such that the

value of X is always in the range 0.2 < x < 50. Since the model of Nielsen

(1983) was formulated using the significant wave height, Abms was

multiplied by 4 before it was used in equations (47)-(49).

230. The parameter X was used to define the limits of the range of AbrW

because it was the empirical parameter used to correlate the field data.

However, unlike the Shields parameter, it is not a physically significant

parameter in defining the initiation of motion and the disappearance of

ripples. In this calculation the values of Shields parameter corresponding

to X - 0.2 were found to be as low as 0.018 which was well below the

critical values for the initiation of motion of 0.05 for this particular

grain diameter. Therefore it was decided to set the lower limit of Abr.s as

the greater of the values corresponding to X = 0.2 and # = 0.5#c. Similarly

the upper limit of Abrs was defined by X = 50 and # = 1.0. For the
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calculations shown here the largest values of # were about 0.5.

231. The results of models 1, 2 and 3 are shown as a plot of friction

factor against Abms for the case with d - 0.2 m and an average period of 6

seconds in Figure 26. This period is at the lower end of the range

observed in the field. The ripple geometry is calculated from equations

(30) and (31) using the root-mean-square wave height. For this period a

value of Abras = 30 cm means values of the root-mean-square wave height of

0.37 m, 0.68 m, and 5.75 m in water depths of 5 m, 10 m, and 30 m,

respectively.

232. The figure shows that the predictions of models 1 and 2 are

identical for small values of Abrs. This is because the sediment transport

correction is negligible at low flow intensities. The kink in the curves

corresponds to the value X = 3.0 above which a different relation is used

for the ripple geometry. The curve from model 3 is above the other curves

for I < 3.0. This is because the coefficient 28.0 in equation (46) is

slightly higher than the best-fit value of 26.0 obtained in Part IV.

However, once X is greater than 3.0 this curve decreases faster than the

other two curves because equation (46) includes the ripple steepness as

well as the height, and the steepness decreases with increased X after I >

3.0.

233. At larger values of Abrus the curve from model 1 continues to

decrease due to the continued decrease of the ripple height while the other

two curves flatten out as the sediment transport term increases in

importance. It is seen that for flow conditions corresponding to I - 50,

with # = 0.5, the predictions of fw from models 1 and 2 are 0.035 and 0.047,

respectively.

234. Figure 27 shows the predicted curves from the same three models

for the case of d = 0.2 m= and a period of 12 seconds. This period is

chosen from the upper end of the range observed in the field. A value of

Abrus - 60 cm is equivalent to waves with a root-mean-square height of

0.4 m, 0.58 m, and 1.28 m in water depths of 5 m, 10 m, and 30 m,

respectively. The behavior of the three curves is similar to the case with

a period of 6 seconds. It is seen that in this case the effect of the

sediment transport term, shown by the difference between the curves from

models 1 and 2, is smaller than before. When X = 50, and the corresponding
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value of # is 0.41, the predicted values of f w are 0.035 and 0.041 from
models 1 and 2 respectively.

235. Figure 28 shows the results from models 1, 4, 5, and 6 for the
case with d - 0.2 mm and a period of 6 seconds. The four models show
considerable differences in the predicted friction factors. For most of
the range of Abrm the curve from model 5, which is based on regular wave
laboratory data, lies above the curves from models 1 and 4, which are based
on field ripple geometry. This is due to the differences in ripple
geometry between the laboratory and the field. At the higher values of
Abms model 5 predicts friction factors that are greater than those
predicted by model 1 by a factor of about 1.9.

236. The curve from the Nielsen model, model 4, begins a little higher

than the curve from model 1 but drops off much more quickly with increasing

Abms. This is because the relation for the ripple height used in this

model, equation (48), causes a more rapid decrease of ripple height with

increasing flow intensity than does equation (43). The curve from model 4

reaches a constant at higher values of Abrm. This is because the sediment

transport term in equation (48) yields a constant value of kn/Ab when Abrus

is high.
237. The curve obtained using model 6 decreases more steeply than all

the other curves. The range of experimental conditions upon which this
equation is based is given by Madsen et al. (1990) as 1.2 < (#/#c) < 2.5.
In this case these values correspond to Abrms between 17 cm and 28 cm. It
is seen that in this region the values predicted by model 6 are within the
range predicted by the other equations. However, use of this model at
large values of Abms results in predicted friction factors that are much
lower than those predicted by the other models.

238. Figure 29 shows the curves predicted by model 1, 4, 5, and 6 for
the case of d = 0.2 mm, and an average period of 12 seconds. It is seen that
the curves behave in a manner similar to the preceding case.

239. Since there are no field data against which to compare these
predictions the figures discussed above do not give any idea of which
method is the best. The comparison serves to highlight the differences
between the models. Figures 26 and 27 shows that the inclusion of the
sediment transport term in equation (45) resulted in the friction factor
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changing from 0.035 to 0.047 in the most extreme instance. The overall

relative error in calcula, - the friction factor from the flow and

sediment parameters was f to be about 1.6 in the example equation.

Therefore it is seen that the difference caused by the sediment transport

term, at the most a factor of 1.35, is considerably smaller than the total

error involved in determining the friction factor. Bearing in mind that

the experimental support of the sediment transport correction is very

limited it seems reasonable to neglect this term at the present time.

240. Figures 28 and 29 show that-a model based on field ripple geometry

can lead to predictions that are signif.-'ntly different from formulations

based entirely on regular and irregul uýý laboratory data. The

predictions are different by a factor of 2 for large values of Abrus.

241. The curves from model 1 and model 4, which are both based on field

geometry, also show significant differences. The main cause of this is the

difference between the equations used to predict the ripple height. As the

parameter X is found to be superior to 0 in correlating the ripple heights,

equation (43) is probably more reliable than equation (46). The eqnlations

used to link the ripple geometry to the friction factor will give siailar

results because the model of Nielsen (1983), i.e., model 4, is based on the

data of Carstens et al. (1969) and Lofquist (1980) which were also used in

the present study.

242. Therefore model 1 which has the equivalent roughness calculated by

equation (44), with. the ripple height calculated using equation (43) using

the root-mean-square wave height and the average period, is proposed as a

predictive relation for the equivalent bottom roughness over a movable bed

under field conditions. It is emphasized once again that use of the model

should be limited to the range 0.2 < X < 50.
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PART VI: SUIYIAR N MD CONCLUSIONS

243. The 6bjective of this study was to develop a simple, physically

realistic model to predict the friction factor over a movable sand bed

under field conditions. Since reliable field measurements are available

only for the ripple geometry it was found necessary to use laboratory data

in order to formlate some aspects of this model.

244. Laboratory experiments are usually conducted with regular waves

while the wave condition in the field is nearly always irregular. The wave

motion in the field is also at larger scales than are usually obtainable in

the laboratory. Thus it is necessary to investigate how far data from

small-scale, regular wave laboratory experiments are applicable in the

field. To this end recent data from irregular wave laboratory experiments

were included in. this study.

245:. After discussing the various methods of measuring the friction

factor it was concluded that the only reliable method was through

measurements of the energy dissipation. Analysis of the data of Lofquist

(1986) showed that the friction factor, fw, defined using the maxim= shear

stress in equation (1) was nearly equal to the energy dissipation factor,

fe, defined in equation (11) for rippled sand beds. Therefore it was

decided to assume that fw and fe were equal and to calculate fw from energy

dissipation measurements using equation (11).

246. It was decided to formulate the model in two stages. The first

step involved deriving predictive relations for the ripple geometry for a

given bottom sediment and a given wave condition. The next step was to

develop a relationship between the flow, the ripple geometry, and the

resulting friction factor. Combining the two models would lead to the

prediction of the friction factor from the wave and sediment parameters.

Summary of RiRple Geometry Analysis

247. The objective of Part III was to compare the existing data on

ripples from the laboratory and the field in order to determine the

applicability of the laboratory experiments to the field. It was noted

that there were only three sets of data on ripples generated by irregular
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waves in the laboratory while waves in the field are almost always

irregular.

248. The ripple length was analyzed in detail because it can be

measured in the field with greater reliability than the ripple height.

Furthermore the ripple lengths observed in the laboratory under regular

waves have a well-defined relationship to the bottom orbital amplitude.

The analysis showed that this relationship was quite different for the

field ripples when the parameter D* was sufficiently small. It was found

that the few data points from ripples formed by irregular waves in the

laboratory at low values of D, tended to support this conclusion.

249. Thus it was concluded that the differences between laboratory data

from regular waves and field data were due to scale effects and the

irregularity of the field waves. The data indicated that these differences

were significant as D, decreased below about 0.2 and the Shields parameter

increased. Since these conditions are the norm for the field it appears

that the present laboratory data cannot be applied to field conditions.

250. This makes it necessary to rely exclusively on field data when

proposing predictive relations for field ripple geometry. New relations

were proposed for the ripple length, height, and steepness that were

improvements on the existing ones. The parameter X, defined in equation

(28), was found to correlate the field ripple data well.

251. Previous models for field ripple geometry have been formulated

using the significant wave height representation of the wave condition.

However, it is seen that the root-mean-square wave height representation is

more relevant to energy dissipation. Furthermore it is found in Part IV

that use of the root-mean-square wave height results in the equivalent

roughness under irregular waves being nearly the same as that under regular

waves. For these reasons it was decided to base the predictive relations

for a field ripple geometry on the root-mean-square wave height and the

average period.

252. Ripple data have been criticized on the grounds that the observed

ripples may have been caused by different wave conditions from those

recorded. However, the laboratory experiments of Rosengaus (1987) show

that when waves are run over an initially rippled bed, the final state is

independent of the initial state if the waves are strong enough to cause
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notion of the sediment. Also the field data of Dingier and Inman (1976)

show that under strong wave conditions the equilibrium ripples can be

formed in a few dozen cycles. The fact that data from different

investigators correlate provides further evidence of the reliability of the

field data.

253. Therefore equations (29), (30), and (31) are put forward as the

most reliable predictive relations for field ripple geometry at the present

time. It should be remembered that these are empirical relations and as

such are only valid in the range of the original data, i.e., for 0.2 < I <

50.

The Equivalent Roughness

254. In Part IV it was attempted to develop a relation between the

flow, the ripple geometry, and the friction factor. This required

experiments with the simultaneous measurement of the flow, the ripples, and

the energy dissipation. Since such experiments have been done only in the

laboratory this section was restricted to the analysis of laboratory data.

255. Analysis of the fixed bed data of Bagnold (1946) and Sleath (1985)

showed that for fully rough turbulent flow the equivalent roughness was

well represented by the simple relations in equations (33) and (34). The

ripple geometries used in these two experiments were thought to represent

two extremes between which the geometry of real sand ripples would fall.

256. The analysis of the energy dissipation data over sand ripples

showed that the simple relations given by equations (33) and (34) were

applicable for the case of a movable bed. The constant of proportionality

obtained fell between the values obtained for the fixed bed data, as would

be expected from consideration of the geometry in these experiments.

257. The fact that the constants were similar for the flow over smooth

field ripples and over sand ripples indicated that most of the flow

resistance seen over sand ripples is due to form drag and not to the skin

friction drag. The relation between the equivalent roughness and the grain

diameter observed by Jonsson (1980b) and Rosengaus (1987) was found to hold

only for equilibrium ripples. Since ripples under irregular field waves

are not at equilibrium it was decided not to use this correlation. The
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equivalent roughness relation given by equation (35) was found to hold for

both equilibrium and growing ripples.

258. The corrections for the effect of sediment motion suggested by

Grant and Madsen (1982) and Nielsen (1983) were reviewed. It was seen that

none of the recently performed experiments were carried out at values of

the Shields parameter that were high enough to allow the confirmation of

these expressions . Furthermore the steady flow experiments of Vilson

(1989) suggest that this correction is likely to be small. Therefore,

while the sediment transport term was included in equation (40), it was

decided to use both equations (35) and (40) for the comparisons and example

calculations.

259. There were only a small number of data, from experiments conducted

at small values of the Shields parameter, in which energy dissipation over

a rippled sand bed with irregular waves had been measured. The best-fit

coefficient for equation (35) using these data was found to be less than

that for the regular wave data from the same apparatus. However, the use

of the value from the regular wave data resulted in a very small change in

the relative error. Therefore it was decided to apply the expressions

derived from regular wave data to the case of Irregular waves with no

change in the coefficients.

Comparison of Models

260. The two models developed in Parts III and IV were compared with

each other and with existing models in Part V for a range of conditions

typical of the field. It was found that the largest difference caused by

the inclusion of the sediment transport term was small compared to the

overall errors involved in the prediction of the friction factor. The

models based on field ripple geometry were found to give results that were

significantly different from the predictions of models based entirely on

laboratory data.

261. Therefore the proposed model for the prediction of the friction
factor in the field is as follows. The wave conditions are represented by

the root-mean-square wave height and the average period. The ripple

geometry is found from
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0.27X-O-5 X < 3b~ms "(52)

0.47X-1.0 I > 3

for 0.2 < X < 50.0 with X defined by equation (42). The equivalent

roughness is given by

kn = 49 (53)

and the friction factor is calculated from equation (7) or found from

Figure 2.

262. This model is based primarily on ripple geometry measurements made

in the field and energy dissipation measurements in the laboratory using

regular waves. The experimental basis of the model would be strengthened

if more energy dissipation measurements are made with irregular waves,

particularly at high values of the shear stress. However, the best way to

check the validity of the model is by a carefully conducted field study

where the wave attenuation and bottom ripple geometry are measured

simultaneously.
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APPENDIX A: THE EXPERIMEMTAL DATA

1. The experimental data used in this study are tabulated in this

appendix. A blank in any colum indicates that the data were not reported.

Uhen the water temperature was not given it was assumd to be 20"C for the

purposes of this report. The derivation of the friction factor and

equivalent wave parameters for some particular data sets are discussed in

detail.

The Data of Carstens et al. (1969)

2. This was the first data set in which the energy dissipation over a

movable bed was measured and these data have been the basis for nearly all

the analyses of the problem. Carstens et al., measured the energy

dissipated in the tunnel by monitoring the air pressure and the water level

in the risers of their water tunnel. All the tests were conducted at

approximately the same period with the orbital amplitude being varied.

3. They calculated the energy dissipation in the tunnel by carrying

out a series of tests with a smooth flat bed. This resulted in a set of

points through which they fit a calibration curve that gave the energy

dissipation and amplitude. The energy dissipation measurements made with a

rippled bed are accompanied by the corresponding smooth bed value that is

obtained from this curve.

4. Let us denote by Eds the total dissipation in the tunnel with a
smooth flat bed. This value is composed of contributions Edt which is the

dissipation due to the curvature of the tunnel and the tunnel walls and Edsb
which is the dissipation on the smooth test bed itself. This can be

written

Eds(Ab) - Edt(Ab) + Edsb(Ab) (A.1)

since all these values depend on Ab, the orbital amplitude.

5. Similarly the total dissipation with a rippled bed, Edr, can be

written as

Al



Edr(Ab) - Edt(Ab) + Edrb (A.2)

where Edrb is the dissipation due to rippled test bed. Subtracting (A.2)

from (A.1) gives Edrb as

Edrb(Ab) - Edr(kb) - Eds(b) + Edsb(Ab) (A.3)

The first quantity on the right-hand side is measured during the rippled

bed run while the second is known from the smooth bed curve. Carstens et

al. neglected the third term as did most investigators, for example Nielsen

(1983), Sleath (1985), and Vongvissesomjai (1987).
6. However, it is possible to estimate the value of this term by

using the friction factor for a smooth bed as given by Figure 1. For example,

for run 31B the reported values of Edr and Eds are 89.4 and 43.6 ft-lbs per

cycle, respectively (121.21 and 62.77 meter-newtons). Ignoring Edsb results in

fe being calculated as 0.07. At this orbital amplitude Edbs is estimated as

4.18 ft-lb (5.67 meter-newtons) per cycle. Using this value changes fe to 0.077,

a difference of 10%. Therefore this method of estimating Edsb was used to

calculate fe for this data set. These values are given in Table A.I.

7. Carstens et al. did not carry out an error analysis of their

results. It can be seen from equation (A.3) that the error in Edrb is

likely to be significant whenever Edr and Es are comparable in value.
8. For example, in run 21 Edr is 3.53 ft-lb and Eds is given as 2.33 ft-lb,

giving a difference of 1.22. Considering the scatter in the calibration curve for

Eds it can be estimated that the uncertainty in the value of Ed, is 0.2

which is about 15%Y of the calculated difference. This effect decreases

when the amplitude of the flow is large because the difference between Edr

and Eds is large. In Figure 19 it was noted that the greatest scatter in
the values of kn, which are derived from-fe, is seen at the lowest flow

intensities.
9. Raudkivi (1988) also attempted to include an estimate of Edsb when

calculating fe. However, it appears that he used a value of Edsb that was

representative of the whole tunnel and not of the smooth test bed. The

result was that his derived values of fe were too high.
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Table A.I(a)
Wave Tunnel Data on Ripple Geometry and Energy Dissipation

under Regular Waves from Carstens at al. (1969)
d - 0.19 m, a - 2.66

Energy
Orbital Radian Water Ripple Ripple dissipation

amplitude frequency teaperature length height factor
Ab_ M, A fe

(cM) (s-) C C) (cM) (cm)

9.00 1.74 17.2 11.6 2.1
11.87 1.75 25.3 15.2 2.5 -
18.16 1.77 26.2 10.9 1.5 0.112
23.70 1.78 24.8 10.6 1.3 0.0914
31.33 1.78 23.9 10.0 0.5 0.0849
8.18 1.77 24.4 10.4 2.1 0.202

11.23 1.77 23.9 - - 0.219
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Table A.l(b)

Wave Tunnel Data on Ripple Geometry and Energy Dissipation
under Regular Waves from Carstens et al. (1969)

d = 0.297 m, s = 2.47

Energy
Orbital Radian Water Ripple Ripple dissipation

amplitude frequency temperature length height factor
Ab w ,A - I fA

(cm) (S-a) (a C) (cm) (cM)

8.92 1.77 26.1 10.6 1.8 0.265
11.99 1.77 24.4 12.7 2.2 0.198
13.66 1.77 23.9 14.5 2.6 0.180
15.37 1.77 25.0 14.5 2.6 0.183
20.85 1.77 22.8 19.4 3.3 0.142
23.39 1.77 22.8 22.1 3.6 0.155
26.11 1.78 22.8 24.5 3.23 0.155
32.39 1.77 22.8 27.0 3.1 0.115
35.6 1.78 22.2 20.1 2.1 0.106
44.5 1.78 22.2 19.1 0.5 0.077
39.05 1.78 21.9 22.0 1.4 0.0717
28.08 1.77 22.8 24.5 3.2 0.134
8.00 1.76 23.9 10.4 1.9 0.385
8.64 1.83 23.9 10.9 1.7 -
7.35 1.899 23.3 8.8 1.6 -
9.53 1.71 22.8 11.8 2.1 -
7.76 1.66 24.2 10.5 1.8 -
5.97 1.77 21.1 - - 0.342

38.57 1.77 18.3 - - 0.0911
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Table A.1(c)

Wave Tunnel Data on Ripple Geomtry and Energy Dissipation
under Regular Waves from Carstens et al. (1969)

d - 0.585 m, s - 2.66

Energy
Orbital Radian Water Ripple Ripple dissipation

aqplitude frequency temerature length height factor
Ab fe

(cm) () C) (cm) (cm)

8.13 1.77 27.2 11.8 2.2 -
10.11 1.76 25.8 14.6 2.8 0.254
12.01 1.77 25.6 16.7 3.3 0.279
13.77 1.77 24.4 18.1 3.4 0.340
16.07 1.77 23.9 20.4 3.9 0.321
18.54 1.78 25.0 23.9 4.5 0.211
19.65 1.761 24.4 25.2 5.2 0.326
22.35 1.77 25.0 29.0 5.8 0.293
24.19 1.77 25.0 25.7 4.8 0.277
24.77 1.78 25.0 26.4 4.9 0.270
26.64 1.78 22.2 30.0 5.6 0.254
29.08 1.77 22.8 26.2 5.0 0.256
30.80 1.7.6 22.8 30.4 6.0 0.257
32.68 1.77 22.8 39.1 5.6 0.244
35.18 1.78 22.8 37.8 6.8 0.225
37.43 1.77 22.8 35.7 6.2 0.226
39.22 1.81 22.8 46.3 6.9 0.202
42.35 1.77 23.3 44.11 6.9 0.199
12.45 1.78 22.8 17.4 3.1 0.517
12.26 1.76 22.8 - - 0.553
14.12 1.78 24.7 - - 0.215
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The Data of Lofauist (1986)

10. Lofquist measured the energy dissipation in a wave tunnel by means

of pressure taps at either end. With the records from these taps he was

able to calculate the instantaneous shear stress on the test bed. The

effect of the sidewalls was accounted for by splitting the tunnel

longitudinally and having a sand bed on one side and a smooth bed on the

other.

11. The results are presented as curves of the instantaneous friction

factor from the shear stress and also as time averages of the product of

the shear stress and the bottom velocity. This allows the calculation of

the fe and fw values plotted in Figure 3.

12. In order to measure the pressure it was found necessary to have a

sand barrier at either end of the tunnel in the form of a rigid crest. This

crest constrains the profile in the tunnel to an integer number of crests

thereby affecting the spacing. To avoid this problem the flow conditions

used were such that the resulting 7ipple length was the same as what was

observed in tests with no barriers. Some runs were done with the flow

chosen so that the ripple profile was different from the profile observed

in an unconstrained bed in order to see what effect the distortion had on

the energy dissipation.

13. Tests were also carried out with no barriers beginning from an

initially flat bed. The friction factor during various stages of ripple

growth was recorded along with the geometry.

14. All these data are given in Table A.2.

The Data of Rosengaus (1987) and Nathisen (1989)

15. These experiments were done in a wave flume with the energy

dissipation measured by recording the change in wave height along the

flume. The effects of non-linearity and sidewall friction were accounted

for by doing preliminary runs with a smooth flat bed: Rosengaus and

Mathisen also conducted experiments with irregular waves. These are the

only experiments reported where energy dissipation in irregular waves has

been measured.
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Table A.2(a)

gave Tunnel Data on Energy Dissipation over Equilibrium Ripples
with Regular Vaves from Lofquist (1986)

d - 0.18 , s- 2.65

Energy
Orbital Radian Vater Ripple Ripple dissipation

amplitude frequency temperature length height factor
b u V A . to

(cM) (8-') C') (cm) (cM)

26.9 0.86 - 31.8 3.8 0.126
30.7 0.75 - 36.4 4.1 0.130
29.9 0.63 - 36.4 4.0 0.130
29.3 0.53 - 36.4 4.2 0.150
30.7 0.75 - 36.4 4.0 0.124
33.5 0.89 - 36.0 3.3 0.159
36.7 0.63 - 42.4 4.8 0.110
34.7 0.54 - 42.4 4.9 0.128
39.3 0.76 - 42.2 3.1 0.126
"44.3 0.52 - 50.9 6.3 0.140
42.7 0.44 - 50.9 6.7 0.171
48.3 0.62 - 50.9 4.9 0.150
26.9 0.86 31.8 4.0 0.127
25.9 0.73 31.8 3.9 0.167
29.5 1.01 31.0 2.6 0.168
19.6 1.18 23.1 3.2 0.189
19.0 1.00 - 23.1 3.4 0.183
14.4 1.61 - 17.0 2.4 0.211
14.0 1.35 - 17.0 2.6 0.223
55.3 0.42 - 65.3 7.0 0.139
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Table 1.2(b)
Wave Tunel Data on rergy Dissipation over Equilibrium Ripples

with Regular Waves from Lofquist (1986)
d - 0.55 m, s - 2.66

Energy
Orbital Radian Water Ripple Ripple dissipation

amplitude frequency teuperature length height factor
Lb ____A Ito

(cm) (s-1) ('C) (cm) (cm)

23.9 1.13 - 31.8 7.1 0.285
23.9 1.69 - 31.8 6.8 0.218
23.9 1.38 - 31.8 7.1 0.248
31.9 1.04 - 42.4 8.5 0.265
25.5 1.30 - 31.8 6.7 0.247
22.0 1.51 - 31.8 6.1 0.258
20.6 1.60 - 31.8 5.4 0.211
27.7 1.20 - 34.0 6.9 0.264
17.4 1.56 - 23.1 4.6 0.218
17.4 1.90 - 23.1 4.5 0.269
17.4 2.33 - 23.1 4.4 0.283
17.4 2.33 - 23.1 4.3 0.277
31.9 1.04 - 42.4 8.8 0.289
31.9 0.849 - 42.4 8.2 0.315
23.9 1.69 - 31.8 6.5 0.184
25.9 2.01 - 31.8 5.2 0.181
28.9 2.21 - 31.8 4.8 0.163
23.3 1.42 - 31.8 6.6 0.212
23.3 1.16 - 31.8 6.7 0.271
23.7 1.70 - 31.8 6.3 0.183
25.5 2.04 - 31.8 5.4 0.186
28.9 2.21 - 31.8 5.1 0.142
17.2 1.93 - 23.1 4.6 0.275
17.2 1.57 - 23.1 4.8 0.224
17.6 2.31 - 23.1 4.5 0.257
24.1 1.68 - 31.8 6.4 0.182
25.5 1.59 - 31.8 6.4 0.175
22.0 1.84 - 31.8 5.7 0.164
20.8 1.95 - 31.8 5.1 0.184
27.5 1.47 - 31.8 6.3 0.177
31.9 1.27 - 43.5 8.2 0.283
31.9 1.63 - 39.5 7.9 0.240
38.3 0.71 - 52.2 10.1 0.348
38.3 0.87 - 58.0 11.5 0.351
38.3 1.06 - 58.0 12.0 0.314
31.1 1.68 - 37.3 6.9 0.236
33.9 1.88 - 37.3 6.2 0.199
28.33 1.43 - 37.3 7.37 0.220
27.9 1.18 - 37.3 7.2 0.277
27.5 0.98 - 37.3 7.1 0.273
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Table 1.2(b)
cont d

Energy
Orbital Radian Water Ripple Ripple dissipation

amplitude frequency temperature length height factor
Ab __ v A _ fe

(cm) ((") VC) (cm) (cM)

33.92 1.54 - 43.5 8.4 0.215
35.1 1.49 - 43.5 8.2 0.247
38.7 1.65 - 43.5 7.7 0.184
32.3 1.25 - 43.5 8.6 0.253
31.9 1.03 - 43.5 8.6 0.317"
31.9 0.85 - 43.5 7.8 0.345
38.3 0.86 - 52.2 10.3 0.309
38.3 0.70 - 52.2 10.2 0.395
38.7 1.05 - 52.2 10.5 0.281
41.9 1.25 - 52.2 9.8 0.229
46.3 1.38 - 52.2 8.9 0.238
47.9 0.69 - 65.3 12.6 0.330
47.9 0.56 - 65.3 13.5 0.415
48.3 0.84 - 65.3 12.9 0.329
51.9 1.01 - 65.3 12.2 0.248
24.3 1.65 - 28.1 5.8 0.178
24.3 1.35 - 28.9 5.9 0.198
24.3 1.11 - 30.3 5.8 0.236
26.7 1.95 - 30.2 5.5 0.150
29.5 2.17 - 31.2 4.7 0.128
24.3 1.63 - 28.8 5.6 0.191
24.3 1.63 - 29.0 5.9 0.209
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Table A.2(c)

Wave Tunnel Data on Energy Dissipation over Growing Ripples
with Regular Waves from Lofquist (1986)

d - 0.18 un, a - 2.65

Energy
Orbital Radian Water Ripple Ripple dissipation

amplitude frequency temperature length height factor
Ib 6_ A f_

(cM) (s-1) (°C) (cm) (cm)

30.7 0.76 25.0 2.8 0.120
30.7 0.76 26.0 2.9 0.138
30.7 0.76 26.7 3.1 0.105

Table A. 2 (d)
Wave Tunnel Data on Energy Dissipation over Growing Ripples

with Regular Wave. from Lofquist (1986)
d - 0.55 m, s = 2.65

Energy
Orbital Radian Water Ripple Ripple dissipation

amplitude frequency temperature length height factor
b u v A q fe

(cm) (s8-) C C) (cm) (cm)

24.3 1.63 - 10.3 0.75 0.0679
24.3 1.63 - 24.0 4.0 0.147
24.3 1.63 - 25.7 5.0 O.177
30.3 1.32 - 14.6 1.75 0.0983
30.3 1.32 - 24.2 3.7 0.163
30.3 1.32 - 32.0 6.3 0.216
30.3 1.32 - 45.0 7.0 0.245
17.6 2.32 - 8.0 0.65 0.0789
17.6 2.32 - 13.8 2.4 0.168
17.6 2.32 - 21.3 3.9 0.226
38.r 1.05 - 7.6 0.3 0.0393
38.7 1.05 - 12.6 1.4 0.0483
38.7 1.05 - 15.8 1.7 0.0811
38.7 1.05 - 21.3 2.8 0.123
38.7 1.05 - 36.0 5.5 0.168
38.7 1.05 - 35.0 5.0 0.188
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16. As a first step towards a random wave notion Rosengaus (1987) used

two waves of different frequency which when superimposed gave rise to an

amplitude-modulated carrier wave. The energy decrease along the flume was

measured for each component separately by transforming the observed surface

displacement to a frequency spectrum. The errors that arose due to the

transfer of energy among the component waves were accounted for by

conducting runs with a smooth flat bed.

17. A full spectrum was then simulated by increasing the number of

component waves--ten in the case of Rosengaus and five in the case of

Nathisen. The amplitude of each of the components, which were at different

frequencies, was adjusted to obtain the required spectral shape.

18. The analysis in this report used an equivalent surface wave with

the root-mean-square height and the average period. The root-mean-square

height was taken to be the root mean square of the heights of the component

waves. For the wave group experiments the average period was taken as the

carrier wave period while for the spectral waves the average period was

taken to be 0.95 of the period of the spectral peak as reconded by Goda

(1985). The total energy dissipation was obtained by summing the measured

dissipation for each component.

19. The derived values are given in Tables A.4 and A.5.

The Data of Sato (1988)

20. Sato (1988) studied ripple geometry created by regular and

irregular waves in a wave tunnel. The irregular wave motion was created as

follows. First a realization of the surface displacement was generated

based on the Brechtschneider-Mitsuyasu spectrum. Linear wave theory was

used to convert this into a time history of the bottom velocity which was

binulated in the wave tunnel.

21. The spectrum that was used to generate the surface signal was

specified by means of a significant wave height and a significant wave

period. Therefore the equivalent wave condition needed for this report was

obtained by dividing the significant height by 4 to obtain HKr and by

taking the average period to be equal to the significant wave period.

The values obtained in this way are given in Tables A. 6 and A. 7.

All

_______________________________________________....__ . A.. .



Table A.3(a)

Wave Flume Data on Ripple Geometry and Energy Dissipation
under Regular aves from hathisen (1989) and Rosengaus (1987)

d - 0.12 me, s - 2.65

Energy
Orbital Radian Water Ripple Ripple dissipation

amplitude frequency temerature length height factor
Ab _ A _ fj

(CM) (l-") (9) (cM) (cM)

4.61 2.39 - 6.5 1.2 0.193
6.44 2.39 - 8.1 1.3 0.190
8.00 2.39 - 8.8 1.2 0.107
9.39 2.39 - 9.2 1.3 0.094

10.3 2.39 - 9.0 1.2 0.084
7.16 2.39 - 8.9 1.3 0. 178

A12



Table A.3(b)

Wave Flume Data on Ripple Geometry and Energy Dissipation
under Regular Waves from Mathisen (1989). and Rosengaus (1987)

d - 0.2 mm, s - 2.66

Energy
Orbital Radian Water Ripple Ripple dissipation

amplitude frequency temperature length height factor
___ __ Id__ _ A Ife

(CM) (s-) ( C) (CM) (CM)

5.52 2.39 - - 0.272
6.94 2.39 - - 0.171
8.56 2.39 - - - 0.176

10.42 2.39 - - - 0.166
11.73 2.39 - - - 0.149
12.59 2.39 - - - 0.111
14.04 2.39 - - - 0.110
9.42 2.39 - - - 0.174
9.08 2.39 - 9.9 1.6 0.173
5.55 2.39 - 7.4 1.3 0.243
7.23 2.39 - 8.9 1.5 0.223

12.05 2.39 - 10.6 1.6 0.180
6.07 2.90 - 8.6 1.3 0.165
9.16 2.03 - 10.2 1.6 0.113
6.43 2.62 - 8.7 1.4 0.187
9.27 2.39 - 10.9 1.7 0.177
9.01 2.39 - 10.1 1.6 0.156
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Table A.4(a)

Wave Flume Data on Ripple Geometry and Energy Dissipation
under Irregular Waves from Mathisen (1989) and Rosengaus (1987)

d - 0.12 m, - 2.65

Energy
Orbital Radian Water Ripple Ripple dissipation

amplitude frequency temperature length height factor
Ab v1 A v t

(CM) ((-") C) (Cm) (CM)

6.43 2.51 - 8.2 1.1 0.0981
6.50 2.51 - 7.9 1.1 0.0840
6.86 2.51 - 9.4 1.1 0.0772
6.93 2.51 - 9.1 1.1 0.0950
5.76 2.51 - 7.7 1.2 0.116
6.48 2.51 - 8.3 1.0 0.122
6.56 2.51 - 8.7 1.1 0.159
5.42 2.51 - 7.6 1.2 0.271
6.95 2.51 - 8.2 1.0 0.166
7.21 2.51 - - - 0.159
6.04 2.51 -- - 0.197
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Table A.4(b)

have Flums Data on Ripple Geometry and Energy Di.ssipation
under Rigular Vaves from Rthisen (1989) and Roslngsus (1987)

d - 0.2 -, s - 2.65

Energy
Orbital Radian Water Ripple Ripple dissipation

amplitude frequency tperature lenh height factor
ii ___________A t

(cm) (31) C) (cm) (cm)

4.51 2.51 - - - 0.258
4.75 2.51 - 7.7 1.1 0.195
8.10 2.51 - 8.6 1.0 0.0557
6.91 2.51 - - 0.104
5.24 2.51 - 8.5 1.2 0.205
5.53 2.51 - 8.2 1.5 0.165
5.28 2.51 - 8.0 1.4 0.214
5.53 2.51 - 8.2 1.4 0.174
5.32 2.39 - - - 0.183
5.21 2.39 - - - 0.467
5.59 2.39 - 8.7 1.5 0.272
5.31 2.39 - 9.1 1.5 0.225
5.73 2.39 - 9.1 1.5 0.144
6.07 2.39 - 8.5 1.4 0.238
5.49 2.39 - 8.6 1.5 0.190
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Table 1.5(a)
Wave Tunnel Data on Ripple Geometry under Regular Waves from Sato (1988)

d - 0.18, s - 2.65 (Tb: flat bed)

Orbital Radian Water Ripple Ripple
amplitude frequency temperature length height

Abu a At
(Cm) (8-I) (c) (cm) (cM)

6.37 6.28 - 6.6 0.7
7.96 6.28 - 7.3 0.8
9.55 6.28 - tf tb

19.1 2.09 - 8.8 1.2
23.9 2.09 - 12.2 1.34
28.7 2.09 - 9.8 1.0
31.8 1.26 - 9.1 1.5
39.8 1.26 - 12.9 1.9
"44.5 0.90 - 10.6 1.5
55.7 0.90 - 19.5 3.1
66.8 0.90 - 12.8 1.4
78.0 0.90 - fb :b
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Table A.5(b)

Wave Tunnel Data on Ripple Geometry under Regular Waves from Sato (1988)
d- 0.56, s - 2.65 (fb: flat bed)

Orbital Radian Water Ripple Ripple
amplitude frequency temperature length height

kbu __v A
(CM) (-1() (6) (cm) (CM)

19.1 4.19 - 18.5 2.5
23.9 4.19 - ftb fb
38.2 2.09 - 31.4 5.6
47.8 2.09 - 35.5 5.7
52.5 2.09 - 29.3 2.9
57.3 2.09 - fb fb
63.7 1.26 - 33.8 4.7
79.6 1.26 - 26.5 2.2
87.5 1.26 - 43.6 5.3
95.5 1.26 - tb fb
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Table A.6(a)
Wave Tunnel Data on Ripple Geometry under Irrerplar Waves from Sato (1988)

d , 0.18, s - 2.65 (lb: flat bed)

Orbital Radian Water Ripple Ripple
aplitude frequency temperature length height

Aub _v A
(ca) (8-1) ( C) (CM) (C)

13.8 2.094 - 9.1 1.1
17.5 2.094 - 10.0 0.7
20.7 2.094 - 9.8 0.7
24.9 2.094 - 8.4 0.5
13.1 2.094 - 9.7 1.2
17.7 2.094 - 10.9 1.1
19.8 2.094 - 8.1 0.5
23.2 2.094 - 8.1 0.4
6.8 2.094 - 8.8 1.4
8.7 2.094 - 10.7 1.5

10.0 2.094 - 9.6 0.7
11.6 2.094 - Lb lb
23.2 1.257 - 9.9 0.9
28.8 1.257 - 7.3 0.4
34.6 1.257 - lb lb
22.6 1.257 - 8.4 1.0
28.0 1.257 - 7.8 0.5
33.6 1.257 - b l'b
10.4 1.257 - 7.7 0.6
13.2 1.257 - 7.4 0.4
15.9 1.257 - fb fb
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Table A.6(b)
Vave Tunnel Data on Ripple Geomitry under Irregular Waves from Sato (1988)

d = 0.56, a - 2.66 (lb: flat bed)

Orbital Radian Water Ripple Ripple
amplitude frequency temperature length heigUt

abu v I_____

(cM) (s8-) (c) (cm) (cm)

14.7 4.189 - 16.8 1.6
18.4 4.189 - 16.1 1.1
20.2 4.189 - fb lb
7.2 4.189 - 17.5 1.8
9.0 4.189 - 18.6 2.2
9.9 4.189 - lb fb

28.2 2.094 - 27.5 3.3
35.1 2.094 - 35.0 2.7
38.6 2.094 - lb 1b
14.7 2.094 - 32.6 4.9
17.6 2.094 - 31.4 3.1
18.5 2.094 - 26.4 2.5
20.1 2.094 - lb lb
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Table A.7

Oscillating Bed Data on Energy Dissipation over Fixed Ripples
with Regular Vaves from Bapold (1946)

Energy
Orbital Radian Water Ripple Ripple dissipation

aplitude frequency texperature length height factorAb • A/ :to

(cm) (s-I) (c) (cE) (cE)

5.0 3.13 - 10.0 1.5 0.206
5.0 3.88 - 10.0 1.5 0.264
5.0 5.86 - 10.0 1.6 0.300
5.0 8.20 - 10.0 1.5 0.265
5.0 9.66 - 10.0 1.5 0.245

10.0 1.24 - 10.0 1.5 0.233
10.0 1.38 - 10.0 1.5 0.246
10.0 1.79 - 10.0 1.5 0.224
10.0 1.94 - 10.0 1.5 0.223
10.0 2.64 - 10.0 1.5 0.237
10.0 2.66 - 10.0 1.5 0.196
10.0 3.76 - 10.0 1.5 0.237
10.0 5.72 - 10.0 1.5 0.208
15.25 1.23 - 10.0 1.5 0.139
15.25 1.61 - 10.0 1.5 0.146
15.25 1.64 - 10.0 1.5 0.164
15.25 2.57 - 10.0 1.5 0.138
15.25 2.59 - 10.0 1.5 0.150
15.25 2.86 - 10.0 1.5 0.164
15.25 3.20 - 10.0 1.5 0.144
15.25 3.55 - 10.0 1.5 0.155
15.25 4.21 - 10.0 1.5 0.137
20.3 0.814 - 10.0 1.5 0.115
20.3 1.12 - 10.0 1.5 0.126
20.3 1.67 - 10.0 1.5 0.134
20.3 2.48 - 10.0 1.5 0.132
20.3 2.58 - 10.0 1.5 0.152
30.5 0.671 - 10.0 1.5 0.096
30.5 1.07 - 10.0 1.5 0.088
30.5 1.35 - 10.0 1.5 0.091
30.5 1.65 - 10.0 1.5 0.083
30.5 1.78 - 10.0 1.5 0.092
5.0 2.38 - 20.0 3.0 0.294
5.0 3.51 - 20.0 3.0 0.244
5.0 5.73 - 20.0 3.0 0.232
5.0 7.62 - 20.0 3.0 0.257
5.0 8.48 - 20.0 3.0 0.283

10.0 1.34 - 20.0 3.0 0.231
10.0 2.20 - 20.0 3.0 0.251
10.0 3.41 - 20.0 3.0 0.219
10.0 3.64 - 20.0 3.0 0.217
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Table 1.7
cont * d

Energy
Orbital Radian Vater Ripple Ripple dissipation

amplitude frequency temperature lenSth height factor
Ab _ __ _ ft

(cm) (C-) c) (cm) (CM)

10.0 4.01 - 20.0 3.0 0.255
10.0 5.17 - 20.0 3.0 0.196
15.25 0.762 - 20.0 3.0 0.262
15.25 1.17 - 20.0 3.0 0.223
15.25 1.67 - 20.0 3.0 0.229
15.25 2.15 - 20.0 3.0 0.247
15.25 2.77 - 20.0 3.0' 0.189
15.25 3.07 - 20.0 3.0 0.199
20.3 1.16 - 20.0 3.0 0.199
20.3 1.49 - 20.0 3.0 0.224
20.3 1.73 - .20.0 3.0 0.214
20.3 1.90 - 20.0 3.0 0.211
20.3 2.30 - 20.0 3.0 0.178
30.5 0.561 - 20.0 3.0 0.130
30.5 0.759 - 20.0 3.0 0.139
30.5 0.919 - 20.0 3.0 0.146
30.5 1.07 - 20.0 3.0 0.143
30.5 1.20 - 20.0 3.0 0.153
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Table A.8
Oscillating Bed Data on Energy Dissipation over Fixed Ripples

with Regular Waves from Sleath (1985)

Enerv
Orbital Radian Water Ripple Ripple dissipation

aqulitude frequency temperature length height factor

(cM) (s-() WC) (CM) (cm)

3.21 1.64 - 7.3 1.7 0.0486
3.21 2.20 - 7.3 1.7 0.0699
3.21 3.08 - 7.3 1.7 0.124
3.21 5.05 - 7.3 1.7 0.179
5.18 0.86 - 7.3 1.7 0.063
5.18 1.18 - 7.3 1.7 0.143
5.18 1.64 - 7.3 1.7 0.166
5.18 2.14 - 7.3 1.7 0.172
5.18 2.14 - 7.3 1.7 0.187
5.18 3.86 - 7.3 1.7 0.195
5.18 5.30 - 7.3 1.7 0.185
6.42 0.72 - 7.3 1.7 0.070
6.42 0.98 - 7.3 1.7 0.104
6.42 1.96 - 7.3 1.7 0.197
6.42 2.25 - 7.3 1.7 0.205
6.42 3.76 - 7.3 1.7 0.176
6.42 4.36 - 7.3 1.7 0.186
6.42 4.79 - 7.3 1.7 0.188
6.42 5.00 - 7.3 1.7 0.178
6.42 5.53 - 7.3 1.7 0.186
7.66 1.58 - 7.3 1.7 0.157
7.66 2.49 - 7.3 1.7 0.191
7.66 4.90 - 7.3 1.7 0.178
7.66 5.71 - 7.3 1.7 0.172

10.3 0.565 - 7.3 1.7 0.0246
10.3 0.91 - 7.3 1.7 0.118
10.3 0.99 - 7.3 1.7 0.133
10.3 1.73 - 7.3 1.7 0.151
10.3 2.74 - 7.3 1.7 0.151
10.3 3.07 - 7.3 1.7 0.158
10.3 3.85 - 7.3 1.7 0.153
10.3 4.57 - 7.3 1.7 0.146
10.3 4.98 - 7.3 1.7 0.143
10.3 4.99 - 7.3 1.7 0.149
15.4 0.438 - 7.3 1.7 0.0369
15.4 0.452 - 7.3 1.7 0.0649
15.4 0.644 - 7.3 1.7 0.0634
15.4 0.616 - 7.3 1.7 0.0679
15.4 0.473 - 7.3 1.7 0.0752
15.4 0.851 - 7.3 1.7 0.100
15.4 1.10 - 7.3 1.7 0.103
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Table A.8
(cont' d)

Orbital Radian Vater Ripple Ripple dissipation
amplitude frequency temperature length height factor

_b _A ft

(cm) (8(") C) (CM) (C€)

15.4 1.73 - 7.3 1.7 0.113
15.4 2.08 - 7.3 1.7 0.118
15.4 2.70 - 7.3 1.7 0.125
15.4 2.70 - 7.3 1.7 0.118
15.4 3.31 - 7.3 1.7 0.115
15.4 3.83 - 7.3 1.7 0.112
20.5 0.346 - 7.3 1.7 0.040
20.5 0.513 - 7.3 1.7 0.0561
20.6 0.745 - 7.3 1.7 0.083
20.5 1.18 - 7.3 1.7 0.0917
20.6 1.50 - 7.3 1.7 0.0932
20.5 1.91 - 7.3 1.7 0.103
20.5 2.43 7.3 1.7 0.105
20.5 2.81 - 7.3 1.7 0.103
30.8 0.37 - 7.3 1.7 0.0465
30.8 0.727 - 7.3 1.7 0.0624
30.8 0.922 - 7.3 1.7 0.0676
30.8 1.23 - 7.3 1.7 0.0747

.30.8 1.75 - 7.3 1.7 0.0736
30.8 2.19 - 7.3 1.7 0.0823
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Table A.9
Field Data on Vave-Forwd Ripple Geoomtry from lman (1957)

(fb: flat bed)

grain Orbital Radian Vater Ripple Ripple
diameter amplitude frequency temperature length height

d Abu v _____
(cm) (cM) (-() (oC) (cm) (cm)

0.0118 55.0 0.628 - 5.8 0.46
0.0153 29.1 0.898 - 7.3 1.0
0.0145 20.5 0.785 - 8.8 1.2
0.015 43.1 0.849 - 7.0 0.6
0.0152 22.6 0.628 - 7.9 1.2
0.0151 39.9 0.542 - 7.9 0.6
0.0147 59.3 0.628 - 6.4 0.6
0.0167 61.4 0.571 - 7.9 0.6
0.0137 44.1 0.628 - 7.6 0.6
0.0124 33.4 0.683 - 7.3 0.9
0.0117 20.5 0.785 - 8.5 1.2
0.012 20.5 1.047 - 9.1 1.5
0.0117 11.9 1.013 - 11.9 1.8
0.0118 44.2 0.731 - 6.7 0.6
0.0124 23.7 0.648 - 9.1 0.9
0.0129 21.6 0.628 - 8.8 1.4
0.0126 31.3 0.622 - 7.6 0.8
0.0118 26.9 0.661 - 7.0 0.6
0.0114 55.0 0.571 - 7.6 0.6
0.0117 63.6 0.483 - 7.0 0.6
0.0135 10.8 0.785 - 18.6 2.3
0.0127 6.6 1.257 - 9.4 1.2
0.0115 10.8 0.785 - 18.9 2.4
0.0106 7.5 0.966 - 11.9 1.5
0.0107 4.3 1.047 - 10.0 1.8
0.0102 35.6 0.604 - 7.6 0.5
0.0102 25.9 0.739 - 7.9 0.7
0.0102 41.0 0.483 - 7.9 0.9
0.0106 14.0 0.661 - 16.1 1.5
0.0103 4.3 1.257 - 11.3 1.8
0.0109 10.8 0.483 - 11.9 1.8
0.0106 32.3 0.483 - 7.9 1.4
0.0106 24.8 0.628 - 14.9 1.5
0.0109 16.2 0.524 - 12.5 1.8
0.0113 22.6 0.524 - 11.6 1.5
0.0081 5.4 0.698 - 10.0 1.7
0.0555 44.2 0.698 - 57.3 9.1
0.0483 26.9 0.698 - 53.9 9.1
0.0635 97.0 0.419 - 85.3 15.2
0.0266 44.2 0.648 - 36.6 4.6
0.0302 25.9 0.610 - 46.3 6.7
0.0418 30.2 0.628 - 71.0 11.2
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Table A.9
(cont 'd)

Grain Orbital Radian Water Ripple Ripple
diameter amplitude frequency temperature length height

d Ab _v_ A

(cs) (cM) (3-1) ('C) (cM) (cM)

0.0408 31.3 0.483 - 70.7 10.7
0.0412 37.7 0.524 - 81.4 12.5
..M06 32.3 0.571 - 77.7 13.4

0.0406 32.3 0.571 - 80.5 12.8
0.0466 28.0 0.524 - 80.8 13.7
0.0345 33.4 0.571 - 79.2 12.2
0.0448 31.3 0.648 - 91.4 14.6
0.0462 23.7 0.610 - 91.4 14.6
0.0423 24.8 0.571 - 77.1 11.9
0.043 34.5 0.524 - 82.9 13.4
0.045T 23.7 0.628 - 53.3 7.6
0.0103 109.9 0.393 - :b lb
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Table A.10

Field Data on Vave-Forind Ripple Geometry froa Killer and Komar (1980)

Grain Orbital Radian Vater Ripple Ripple
diameter amlitude frequency temerature length height

d u _ _ _ _ _

(cm) (cm) (s'1) C) (cm) (cm)

0.0165 89.2 0.722 10.0 22.4 -
0.0165 73.1 0.346 10.0 22.4 -
0.0165 178.5 0.628 10.0 9.4 "
0.0165 58.5 0.754 10.0 9.7 -
0.0165 132.7 0.440 10.0 16.6 -
0.0165 55.9 0.440 10.0 9.T -
0.0165 47.8 0.722 10.0 18.1 -
0.0165 107.0 0.377 10.0 18.1 -
0.0165 6.8 0.785 10.0 25.1 -
0.0165 43.6 0.409 10.0 25.1 -
0.0165 14.3 0.785 10.0 22.4 -
0.0165 72.1 0.409 10.0 22.4 -
0.0165 51.5 0.785 10.0 7.8 -
0.0165 69.6 0.660 10.0 8.2 -
0.0165 98.6 0.471 10.0 8.4 -

.0.0165 68.0 0.598 10.0 10.2 -
0.0165 60.6 0.598 10.0 7.7 -

0.0165 80.2 0.518 10.0 8.6 -
0.0165 90.7 0.542 10.0 8.1 -
0.0165 48.6 0.542 10.0 8.6 -
0.0165 30.0 0.849 10.0 8.3 -
0.0165 40.7 0.597 10.0 8.3 -
0.0165 61.9 0.377 10.0 8.3 -
0.0165 42.8 0.660 10.0 7.6 -
0.0165 32.0 0.660 10.0 8.2 -
0.0165 5.3 0.88 10.0 22.2 -
0.0165 31.1 0.409 10.0 22.2 -
0.0165 16.2 0.691 10.0 17.5 -
0.0165 34.1 0.628 10.0 14.9 -
0.0165 53.2 0.377 10.0 14.9 -
0.0287 10.3 1.047 20.0 22.3 -
0.0287 21.0 0.810 20.0 26.9 -
0.0287 12.4 0.754 20.0 27.1 -
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Table A.11

Field Data on Vave-Formed Ripple Geometry from Nielsen (1984)
(lb: flat bed)

Grain Orbital Radian Vater Ripple Ripple
diameter amplitude frequency temperature legh height

d ....A . v

(cm) (cm) ("') (C) (cm) (cm)

0.049 50.7 0.748 26.0 50.0 5.0
0.05 47.0 0.885 26.0 50.0 15.0
0.05 50.4 0.838 26.0 50.0 15.0
0.05 50.3 0.827 26.0 50.0 15.0
0.025 41.3 0.873 26.0 lb lb
0.016 67.8 0.739 25.0 fb lb
0.023 93.8 0.582 26.0 lb lb
0.017 124.5 0.487 26.0 fb lb,
0.011 39.8 0.885 26.0 5.0 0.5
0.012 31.3 0.885 26.0 fb lb
0.033 58.6 0.806 20.0 70.0 7.5
0.033 59.9 0.706 20.0 70.0 7.5
0.03 47.7 0.766 20.0 65.0 7.5
0.03 64.1 0.698 26.0 65.0 7.5
0.04 58.6 0.766 20.0 80.0 10.0
0.04 70.9 0.748 20.0 60.0 8.0
0.04 60.8 0.806 20.0 60.0 8.0
0.017 91.7 0.766 21.0 lb lb
0.016 66.4 0.731 21.0 fb lb
0.016 78.1 0.598 21.0 b lfb
0.02 56.5 0.795 21.0 lb lb,
0.016 86.0 0.661 21.0 lb lb,
0.044 58.1 0.628 22.0 55.0 5.7
0.062 137.5 0.524 22.0 55.0 5.7
0.051 94.6 0.598 22.0 48.0 4.3
0.045 63.6 0.668 22.0 48.0 4.3
0.038 116.1 0.487 16.0 50.0 8.0
0.038 101.4 0.499 16.0 50.0 9.0
0.045 88.8 0.566 16.0 35.0 7.0
0.044 61.5 1.102 16.0 50.0 8.0
0.048 69.2 0.885 16.0 60.0 8.0
0.049 70.7 0.816 16.0 60.0 8.0
0.047 93.3 0.655 16.0 60.0 8.0
0.047 113.6 0.616 16.0 60.0 8.0
0.047 70.9 0.683 16.0 50.0 7.5
0.047 49.9 0.873 16.0 50.0 7.5
0.045 43.6 1.013 16.0 55.0 10.0
0.045 45.2 1.030 16.0 55.0 10.0
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Table A. 12
Vave Tunnel Data an Ripple Geometry under Regular Vaves

from Nogridge and Kaphois (1972)
d - 0.36, a - 2.65

Orbital Radian Vater Ripple Ripple
amplitude frequency temperature length height

Ab _ d A_7
(cm) (8-1) ( C) (cM) (cM)

77.6 0.781 17.8 42.7 7.0
9.41 2.50 17.2 12.9 2.1

15.7 1.56 17.2 19.7 3.3
15.6 1.56 17.8 20.0 3.4
25.8 1.56 17.8 28.1 4.8
21.8 1.11 17.8 28.4 4.8
29.4 1.11 17.8 37.7 5.8
32.0 1.56 17.8 33.8 5.1
36.0 0.781 17.8 44.3 6.8
42.8 0.781 17.8 50.0 8.8
51.9 0.781 17.8 54.8 9.5
53.7 0.625 17.8 60.1 10.1
60.9 0.521 17.8 65.0 10.4
66.8 0.521 17.8 73.5 11.5
75.4 0.447 18.3 81.2 13.6
93.0 0.447 18.3 101.7 18.4
13.5 1.56 17.8 17.2 3.0
21.1 1.56 17.8 25.0 3.8
29.7 1.56 17.8 33.0 4.6
38.0 1.56 17.8 27.8 4.9
43.9 1.56 17.8 22.7 3.9
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Table A. 13

Vave Flume Data on Ripple Geometry under R Waves
from Nogridge and Kabhuis (1972)

d - 0.36, a - 2.65

Orbital Radian Water Ripple Ripple
amplitude frequency temperature length heightAb - vAI

(cM) ((') C) (cm) (cm)

2.50 5.77 13.6 3.3 0.57
2.69 5.81 13.3 3.6 0.50
3.00 5.82 14.4 3.7 0.53
3.22 5.82 14.4 4.0 0.64
3.40 5.81 13.3 4.2 0.65
3.66 5.81 13.3 4.8 0.66
3.13 5.79 13.8 4.4 0.61
2.91 5.82 7.5 3.6 0.51
3.27 5.78 5.8 4.3 0.61
2.93 5.80 7.2 3.8 0.53
2.74 5.82 4.7 3.4 0.44
3.30 5.80 4.4 4.3 0.62
3.00 5.81 5.6 3.6 0.54
3.98 5.90 8.1 4.9 0.69
4.03 5.77 5.8 5.3 0.75
4.17 5.78 7.8 5.0 0.69
3.51 5.80 5.3 4.5 0.61
4.28 5.78 5.8 5.0 0.67
3.90 5.78 16.7 5.0 0.65
2.62 6.27 18.1 3.2 0.48
2.25 6.28 18.9 3.0 0.44
2.83 6.26 19.2 4.0 0.54
3.61 6.28 19.4 4.5 0.62
3.14 6.23 17.8 4.0 0.56
3.30 6.27 18.6 4.1 0.56
2.89 6.24 18.9 3.7 0.54
3.24 6.26 19.2 4.2 0.57
3.66 6.28 19.2 4.6 0.62
3.07 4.99 18.9 4.5 0.67
4.00 5.01 19.2 5.2 0.70
3.57 4.99 18.6 4.8 0.69
3.81 5.00 18.3 5.1 0.80
2.92 4.98 18.6 3.5 0.53
3.05 5.00 18.6 4.2 0.59
2.97 5.00 18.6 4.1 0.59
5.57 2.50 19.2 6.6 1.15
8.78 2.50 19.2 7.7 1.13
5.88 2.50 19.2 7.0 1.31
5.55 2.50 17.8 6.6 1.00
5.47 3.10 19.2 6.4 0.95
4.91 3.11 21.9 6.1 0.85
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Table 1.13
(cont'd)

Orbital Radian Vater Ripple Ripple

aplitude frequency teperature length height

(CM) ((-o) Wc) (cm) (cE)

3.19 5.78 21.9 3.8 0.58
2.80 5.77 21.7 3.4 0.52
3.76 5.77 21.9 4.6 0.70
3.88 5.77 22.2 5.0 0.75
3.48 5.79 22.5 4.3 0.65
4.04 5.80 21.7 4.9 0.72
3.11 5.77 21.7 3.7 0.58
2.69 5.77 21.7 3.5 0.49
3.89 5.77 21.7 4.8 0.67
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Table A.14(a)

Wave Tunnel Data on Ripple Geometsry under Regular Waves
from Lofquist (1978)

d - 0.18 m, a - 2.65

Orbital Radian Water Ripple Ripple
amplitude frequency temperature length height

Ab __vA__

(cm) (C-1) (o C) (cm) (cm)

11.4 2.11 - 14.0 2.0
11.4 1.92 - 14.0 1.7
11.4 2.32 - 13.3 1.8
9.27 2.29 - 11.4 1.6

18.3 1.14 - 21.0 2.8
27.5 0.83 - 26.8 3.3
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Table A.14(b)
Wave Tunel Data an Ripple Geomitry under Regular Waves

from Lofquist (1978)
d - 0.55 m, s - 2.65

Orbital Radian Water Ripple Ripple
amplitude frequency temperature length height

Ab _ _ _1

(cm) (3-1) (C) (cm) (cM)

45.8 0.76 - 72.7 15.5
45.9 0.78 - 58.4 12.4
49.7 0.56 - 55.1 10.9
36.7 0.96 - 55.3 10.1
36.7 1.18 - 42.8 8.9
36.7 1.48 - 40.1 7.6
23.0 1.51 - 27.9 5.4
30.1 1.20 - 32.7 6.5
36.7 0.78 - 50.1 10.6
19.3 1.84 - 24.9 4.3
13.9 2.23 - 23.9 3.5
15.1 2.05 - 22.9 3.5
13.8 2.32 - 20.8 3.2
14.3 2.27 - 19.0 3.4
24.5 1.41 31.9 6.0
11.9 2.77 - 10.9 2.8
23.8 1.45 - 25.4 5.5
18.3 1.83 - 27.4 4.1
27.6 1.41 - 33.7 6.8
27.6 2.79 - 26.2 4.5
13.7 2.32 - 21.8 3.4
13.8 1.90 - 16.0 2.2
13.7 1.35 - 16.0 2.0
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Table A.15(a)

Wave Flume Data on Ripple Geometry under Regular Waves
from Nielsen (1979)

d - 0.082 m, a - 2.66

Orbital Radian Water Ripple Ripple
amplitude frequency temperature length height

_b v_ A
(cm) (3-1) (o" (cm) (CM)

1.19 6.28 - 2.9 0.6
1.39 6.28 - 2.9 0.5
1.45 6.28 - 2.0 0.5
1.59 6.28 - 2.9 0.5
1.78 6.28 - 2.9 0.4
2.09 6.28 - 3.0 0.5
2.52 6.28 - 3.0 0.5
2.89 6.28 - 3.0 0.45
3.17 6.28 - 3.4 0.6
3.48 6.28 - 3.6 0.6
2.68 3.70 - 4.3 0.7
2.98 3.70 - 4.4 0.8
3.38 3.70 4.7 0.8
3.93 3.70 5.0 0.8
4.60 3.70 5.6 0.8
5.21 3.70 5.9 0.9
5.92 3.70 - 5.27 0.7
6.60 3.70 - 6.0 0.75
7.16 3.70 - 5.6 0.6
8.25 3.70 - 5.7 0.8
8.82 3.70 - 5.6 0.6
9.45 3.70 - 5.3 0.5

10.25 3.70 - 5.2 0.55
11.03 3.70 - 4.9 0.55
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Table A.15(b)
Vave Flume Data on Ripple Geomtry under Regular Vaves

from lielsen (1979)
d - 0.17 -m, s a 2.65

Orbital Radian Vater Ripple Ripple
amlitude frequency temperature lengt height

(cM) (8-') ('C) (cm) (cm)

3.13 3.70 - 4.5 0.8
4.64 3.70 - 5.6 0.9
5.97 3.70 - 6.7 1.15
6.92 3.70 - 7.5 1.25
7.90 3.70 - 8.7 1.3
8.66 3.70 - 8.5 1.2
9.36 3.70 - 7.4 1.2

10.47 3.70 - 7.4 1.0
12.75 3.70 - 8.8 1.2
13.10 3.70 - 9.4 1.3
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Table A.16(c)
Vave Flume Data on Ripple Gometry under Regular Waves

from Nielsen (1979)
d - 0.36 s, -= 2.65

Orbital Radian Water Ripple Ripple
amplitude frequency temperature length height

Abu _ AI
(cm) (a-1) (C) (cM) (cm)

4.05 3.70 - 5.7 0.96
4.47 3.70 - 6.3 1.0
5.00 3.70 - 7.1 1.0
6.40 3.70 - 8.6 1.4
7.52 3.70 - 9.6 1.55
9.22 3.70 - 11.9 1.8

10.5 3.70 - 12.8 1.9
11.29 3.70 - 13.4 2.2
12.4 3.70 - 13.8 1.9
14.0 3.70 - 13.3 1.9
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Table A. 16(a)

Wave Tunnel Data on Ripple Geometry under Regular Waves
from Labie (1984)

d - 0.09 m- s = 2.65

Orbital Radian Water Ripple Ripple
amplitude frequency temperature le nth height

Ab v•ge

(Ci) (s2-) (c) (cm) (cm)

11.0 1.09 65.2 11.6 1.45
39.0 1.09 60.2 55.0 3.5
14.5 1.05 64.0 12.4 1.8
8.0 2.73 62.2 7.6 1.4

20.25 1.14 69.0 21.2 1.8
21.0 1.14 65.0 15.6 2.1
13.0 1.40 65.0 14.0 2.0
10.5 2.00 64.4 10.5 1.5
8.5 2.17 59.6 11.0 2.1

10.5 2.17 59.6 10.6 1.3
19.5 2.17 67.2 6.5 2.0
7.75 2.73 52.3 6.6 1.2

11.25 2.73 54.0 8.0 1.2
9.0 2.73 52.4 7.5 1.2

17.5 1.40 65.0 18.0 2.7
14.5 2.00 60.0 8.3 2.3
59.5 1.09 57.0 1b 1b
65.0 1.09 57.0 'b lb
80.5 0.84 48.4 fb lb
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Table A.16(b)

Wave Tunnel Data an Ripple Geometry under egular Waves
from Lambie (1984)

d - 0.15 ma, s - 2.65

Orbital Radian Vater Ripple Ripple
amplitude frequency teperature length height

Ibu _

(cm) (*) ('C) (cm) (cm)

19.75 1.34 56.5 18.2 2.9
19.75 1.34 56.0 23.0 3.3
6.75 2.24 59.0 11.5 2.1

10.25 2.24 50.0 12.5 2.3
11.75 2.31 60.5 13.2 2.2
21.75 1.63 64.5 25.3 3.2
19.25 1.64 60.5 20.3 4.0
16.75 1.64 58.7 18.5 3.3
13.9 1.64 63.5 16.3 2.8
10.16 1.63 60.0 11.5 1.8
15.5 1.06 65.0 17.2 2.8
25.5 1.63 62.5 22.2 4.1
24.0 1.62 70.0 20.4 4.0
39.4 1.19 68.5 33.0 3.9
36.0 1.19 64.2 30.5 4.4
28.0 1.19 64.2 27.0 3.8
26.3 1.19 67.1 24.0 4.8
17.7 1.19 69.7 20.2 3.4
9.75 1.19 75.5 18.8 3.1
9.15 1.19 63.0 9.4 1.4

12.6 1.19 63.0 9.3 1.7
11.5 1.19 63.0 13.8 2.6
37.75 0.87 21.9 29.7 4.0
21.0 1.37 22.0 17.3 2.8
40.5 1.34 51.0 33.0 3.7
15.0 2.24 64.5 17.0 2.5
18.75 2.24 59.5 20.0 1.9
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Table A. 17

Wave Flum Data on Ripple Geometty under Regular Waves
from Riller and Komar (1980)

d - 0.178 mi, a - 2.65

Orbital Radian Water Ripple Ripple

amplitude frequency temperature length height
Ab A I

(cm) )') ( C) (cm) (cm)

7.59 2.09 17.0 6.0 1.0
8.37 2.09 17.0 7.5 1.0

15.4 1.57 17.0 13.5 1.0
26.8 1.26 17.0 10.6 1.0
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Table 1.18(a)

Vave Flune Data on Ripple Geometry under Regular Vaves
fro' Kennedy and Falcon (1965)

d - 0.095 m, * - 2.65

Orbital Radian Vater Ripple Ripple
aiplitude frequency te~erature legt height

(cE) ((6) Wc) (cm) (cE)

2.08 5.87 18.3 3.0 0.51
3.88 3.22 18.3 4.8 0.82
5.39 3.22 18.3 5.6 1.1
5.78 2.69 18.3 5.5 1.0

A39



Table A.18(b)
Vave Flume Data on Ripple Geometry under Regular Vaves

from Kennedy and Falcoln (1965)
d - 0.32 mis, a - 2.65

Orbital Radian Vater Ripple Ripple
amplitude frequency temperature length heightAb A

(cm) (o1 (C) (cm) (cmI)

4.99 4.52 23.9 6.3 1.0
5.33 4.00 23.9 7.2 1.2
6.47 4.00 23.9 8.6 1.6
4.79 4.52 23.9 6.2 1.2
4.26 4.00 23.9 5.9 1.3
3.24 4.52 23.9 4.6 0.7
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Table A. 19
Wave Flume Data on Ripple Geometry under Regular Waves

from Inuan and Bowen (1963)
d - 0.2 ,m - 2.65

Orbital Radian Water Ripple Ripple
amplitude frequency temperature length height

(cm) (3-') C) (cm) (cM)

4.9 4.49 8.0 6.5 1.1
9.6 3.14 15.0 10.8 1.5
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APPLVDII B: NOTATION

Ab bottom orbital amplitude Ab = ub/al

Abr representative bottom orbital-amplitude of Madsen et al (1988),

defined by equation (20)

Abras bottom orbital amplitude based on the root-mean-square wave height

A* acceleration parameter defined by equation (16)

d grain diameter

D, non-dimensional parameter D, = dV2/g

e relative error defined in equation (27)

Ed time-averaged energy dissipation per unit area in the wave boundary

layer

fe energy dissipation coefficient defined by equation (1)

ferns energy dissipation coefficient based on the root-mean-square wave

height

fw friction factor defined in equation (1)

fw' friction factor based on the grain diameter

g acceleration due to gravity

h water depth

Hm= root-mean-square wave height

Hi/ 3  significant wave height

k wave number

kn equivalent Nikuradse roughness

knf equivalent roughness due to form drag

kns equivalent roughness due to sediment motion

r root-mean-square error

Re near-bottom flow Reynolds number Re = AbUbm/y

Re* friction Reynolds number

s specific gravity of the sand grains

Sub(O) frequency spectrum of near-bottom velocity

Sn(u) frequency spectrum of surface amplitude

S, non-dimensional parameter S* = dV(s-1)gd/4v

t time

u velocity

ub(t) instantaneous near-bottom velocity
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Uba maximum near-bottom velocity

Ubure maximuim near-bottom velocity based on the root-mean-square wave

height

Ubr representative near-bottom velocity of Madsen et al. (1988) defined

by equation (18)

u, shear velocity

Un shear velocity based on maximum bottom shear stress

x non-dimensional parameter X = $IS*

z height above the bottom

z0 bottom roughness scale

(0 non-dimensional bottom roughness scale

9 ripple height

6 non-dimensional parameter 0 - Ub. 2/(s-1)gd

SVon Karman's constant x- = 0.4

A ripple wave-length

V kinematic viscosity

p density of water

Ps density of sand

r shear stress

Tb(t) instantaneous bottom shear stress

Tb. maximim bottom shear stress

0 phase lead of maximum bottom shear stress

# Shields parameter # = lfw'ubm2/(s-1)gd

0c critical Shields parameter for the initiation of motion

U radian frequency
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